
Retroactive Sustainability Improvements in the
Merlin++ Particle Tracking Code

S. Rowan, S. Tygier, Y. Cai, C. Venters, R. Appleby, R. Barlow

thanks to S. Redaelli

1

What is Merlin++?

• Merlin++ is a multi-purpose particle accelerator and particle tracking simulation library

• Originally developed at DESY for ILC studies, circa late 90’s

• Used/developed/maintained by Manchester/Huddersfield (UK) for HL-LHC / FCC
collimation/loss studies since mid 2000’s

• Main feature set (non-exhaustive):

• Extensive use of Object-Orientated Design methodologies

• Ring and beamline lattice construction (incl. MAD twiss import)

• Single particle/bunch tracking and acceleration (optional ROOT integration)

• Advanced collimation (conventional/HEL) and scattering (pomeron)

• Wakefield simulations

• and many more…

2

What is Software Sustainability?

3

Start working on software Look for documentation

find none...

Look through old literature

find reference to website!!

Wayback to the rescue!
Genuine quote!

Example of bad practice (…and why Merlin++ is a good case study!)

“Unfortunately, what is sadly

lacking is any form of general

documentation for the library

(e.g. a user’s guide.)”

What is Software Sustainability?

4

Sustainability MaintainabilityUsability

Understandability

Documentation

Buildability

Learnability

Installability

Identity

Copyright

Licencing

Governance

Community

Accessibility

Testability

Portability

Supportability

Analysability

Changeability

Evolvability

Interoperability

A more formal definition (though not the only one!)

SSI Sustainability Evaluation

5

• The UK Software Sustainability Institute (link) identifies two forms of sustainability

assessment:

• Tutorial-based Assessment → Focus on user/developer experience

• Qualitative

• Criteria-based Assessment → Focus on meeting specific criterion

• Quantitative

• Decision to focus on criteria for improvements

• Note that the SSI assessments focuses on a software package’s surrounding infrastructure

rather than code base itself → a good place to start nonetheless

https://www.software.ac.uk/

SSI Sustainability Evaluation

6

Understandability 3/7 Unsatisfactory 6/7 Excellent
Documentation 3/19 Poor 14/19 Satisfactory

Buildability 3/9 Unsatisfactory 8/9 Excellent
Installability 7/14 Unsatisfactory 9/14 Satisfactory
Learnability 0/5 Poor 3/5 Satisfactory

Identity 3/7 Unsatisfactory 5/7 Satisfactory
Copyright 1/5 Poor 5/5 Excellent
Licencing 3/4 Satisfactory 4/4 Excellent

Governance 1/2 Unsatisfactory 2/2 Excellent
Community 1/11 Poor 6/11 Satisfactory
Accessibility 6/11 Satisfactory 8/11 Satisfactory
Testability 1/17 Poor 11/17 Satisfactory
Portability 10/16 Satisfactory 10/16 Satisfactory

Supportability 4/19 Poor 10/19 Satisfactory
Analysability 6/16 Unsatisfactory 13/16 Excellent
Changeability 3/10 Unsatisfactory 9/10 Excellent
Evolveability 0/3 Poor 2/3 Satisfactory
Inoperability 2/3 Satisfactory 3/3 Excellent

New
Evaluation

Original
Evaluation

Evaluation Key:
0-25% → Poor
25-50% → Unsatisfactory
50-75% → Satisfactory
75-100% → Excellent

Met
Criterion• Criteria-based Assessment

• Originally generally poor /

unsatisfactory

• A lot of work required!

• Overall, significant

improvements throughout!

Met
Criterion

Sustainability
Metric

Addressing Criteria

7

• Usability

→ New Website (soon™)

→ Clean/Public Github repository (link)

→ Build/Install/IDE use guide

→ Quick Start Guide/Examples/Tutorials

→ Full User Guide being drafted

• Maintainability

→ MERLIN → Merlin++

→ API/Class library documentation (doxygen)

→ Practical test suite/Nightly builds (cdash)

→ Copyright standardization to GPL2+

→ Standardized code style/formatting (Uncrustify)

→ Developer/Coding style guide/pre-commit hooks

https://github.com/MERLIN-Collaboration

Code Base Analysis

8

Code Quality Analysis

• To identify technical debt arisen in terms of code quality we used the following

• Static Analysis: Eclipse CDT plugin ‘Metriculator’  Complexity/LSLOC/Efferent Coupling etc

• Dynamic Analysis: Valgrind, Intel’s VTune Amplifier  memory leaks/cache misses etc

Architecture/Structural Analysis

• In collaboration with Drexel University to analyze Merlin++ using their ArchDia DV8 tool
suite (link). Constructs design structure matrices (DSMs) to quantify architectural debt:

• Decoupling Level

• Propagation Cost

• Package Cycling

• Unhealthy Inheritances

• and many more…

https://www.archdia.net/

Code Base Analysis

9

• A little more on DV8…

• The ‘Design Rule Hierarchy’

• Robust clustering algorithms
identify most influential files
(files in low layer groups
depend on those higher up)

• Files within layer groups are
ordered into mutually
independent modules

• Process allows one to
identify dependency
hotspots and coupling issues

Code Quality Analysis

10

• Code quality analyses identified ~30 ‘severe’ classes/member functions which require
reworking, i.e. exceeded lenient limits on at least 1 metric

• For perspective, Merlin++ contains 5332 member functions

• Investigation revealed common code smells

• Functions trying to do too much ‘God Objects’

• C/MATLAB-style code/High Complexity

• Mass use of for loops/if/switch statements etc
by less-skilled, more recent user-developers

• Focus on functionality and simulation results
rather than code design

• Solution: OOD/Design Patterns/S.O.L.I.D

• Subsequent dynamic analysis showed that addressing complexity issues inherently improved
performance 2-3% by means cache miss reduction

Architecture/Structural Analysis

11

• DV8 architecture analysis revealed Merlin++ to
be somewhat structurally sound (great news?)

• Relatively high (~0.78) decoupling level

• Relatively low (~0.11) propagation cost

• Nonetheless, a number of architectural flaws
were identified – likely responsible for
propagated technical debt

• Package Cycling (12 violations)

• Unhealthy Inheritance (18 violations)

• We found that the clustered DSM analyses not
only identified flaws, but provided clear solution
pathways

0.68
0.7

0.72
0.74
0.76
0.78
0.8

0.82
Decoupling Level

decay?

Unhealthy Inheritance

Package Cycling
Violates Liskov Substitution Principle

Summary and Conclusions

12

• Merlin++ particle tracking software was noted to have significant user-developer issues

• UK Software Sustainability Institute criteria-based assessment was used to identify and
implement Merlin++ accessibility, usability and maintainability improvements

• Code quality analyses were carried out using Metriculator/Valgrind/Vtune Amplifier

• Structural dependency/architectural analysis was carried out using ArchDia DV8

• The Merlin++ developers found their approach to improving sustainability to be very effective

• Cyclomatic Complexity and Structural Dependency (DSM) analyses were found to be
particularly useful

Thanks for listening!

