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This talk

▶ Challenges ahead of us
▶ ROOT’s approach to parallelism
▶ Parallel components
▶ The future

● Distributed analysis
● Heterogeneous platforms

2

Unless explicitly 
stated, everything 

available in ROOT 6.14!
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Opportunities Ahead of Us

▶ HL-LHC: Challenge for data processing and analysis SW
● In both areas ROOT is a key component

▶ Parallelism: not the solution, a prerequisite

▶ Find and create opportunities for parallelism in ROOT
● Replace components for which evolution is not possible

● Provide programming model which makes scientists productive - cannot 

require too broad technical skill set from neophytes
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ROOT’s Approach to Parallelism



Parallelism in ROOT

Implicit parallelism: operations run in parallel w/o user’s intervention

▶ Just invoke ROOT::EnableImplicitMT()
▶ Task based backed by multithreading, TBB library in the backend

● Must not overcommit node, can share pool with other libraries
▶ Data parallelism: 1st class citizen (VecOps) with vectorisation support

Explicit parallelism: user expresses parallelism, ROOT provides low level 
tools to do that efficiently

▶ Map, MapReduce helpers (T{Process,Thread}Executor)
▶ Forking based multiprocessing backend in ROOT
▶ Mutexes, async launcher
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Classic Interfaces
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● Get a dataset in a file
○ Columns: px, py, E (collections)

● Fill a histogram with square sum of 
px and py for entries where E >100

Imperative way, explicit double loop
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Ergonomic Interfaces
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Declarative, type safe, jit to simplify, task 
parallelism, vectorised operations on collections

Runs in parallel! Collections, operations vectorised
A cut

See E.Guiraud RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, Track 6, Hall 9, 10th July 11:45
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Parallelised Components



What is Implicitly Parallelised?
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ROOT::EnableImplicitMT() activates parallelised:

▶ RDataFrame event-loop

▶ TTree::GetEntry read of multiple branches 

▶ TTree::FlushBaskets write of baskets

▶ TTreeCacheUnzip decompression of TTreeCache content

▶ TH{1,2,3}::Fit evaluation of the objective function over the data

▶ TMVA::DNN trains NN in parallel

And more to come!
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https://root.cern/doc/master/namespaceROOT.html#a06f2b8b216b615e5abbc872c9feff40f
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://root.cern/doc/master/classTTree.html#a9fc48df5560fce1a2d63ecd1ac5b40cb
https://root.cern.ch/doc/master/classTTree.html#a211dc76caa325df4e820d86c3f17319d
https://root.cern/doc/master/classTTreeCacheUnzip.html
https://root.cern/doc/master/namespaceTMVA_1_1DNN.html


IMT Effect On CMS Data Processing
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Activate Implicit MT:
+43% Throughput

Add Parallel Writing:
+13% Throughput

                        
18% away from asymptotic 
value (not filling nor writing 

output datasets)

D. S. Riley, CMS And ROOT IO, ROOT IO Workshop, 20 June 2018, CERN
See G. Amadio Writing ROOT Data in Parallel with TBufferMerger Track 5, Hall 3, 10th July 12:15
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https://indico.cern.ch/event/715802/contributions/2942558/
https://indico.cern.ch/event/587955/contributions/2938149
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ROOT Can Scale Well on Extreme Architectures

Knightslanding
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No IO, KNL, 64 Physical cores
Monte Carlo QCD low-pt events 
generation+analysis on the fly

Ad-hoc implementation (patched 
ROOT5 & POSIX threads) Vs 
RDataFrame

Original code by experienced 
developer (R. Brun), intentionally not 
thread safe (RDF always is)

Extreme Architectures
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Spotlight on TMVA parallelism
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See K.Albertsson New ML Developments in ROOT/TMVA , Track 6, Hall 9, 9th July 11:15

BDT’s: implicit parallelism

▶ Specific operations in tree construction process
▶ x 1.6 speedup for 4 threads 

Cross Validation: multiprocessing based

▶ Evaluate each fold independently
▶ Almost linear scaling!

And of course, Cuda based implementation of DNNs in TMVA
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Spotlight on Math parallelism

13

Evaluation of objective functions is parallelised and vectorised

▶ Adapt TF1, TFormula, fitting internal classes
▶ Leverage ROOT::Double_v SIMD type - based on VecCore
▶ AVX2, 2x2 cores: factor 10x not uncommon!

Introduced ROOT::RVec<T>: vectorised operations made easy

▶ std::vector like interface, ergonomic support of analysis operations
▶ Can adopt memory or own it
▶ Vectorised arithmetic operations, math functions

See also L. Moneta Vectorisation of ROOT Mathematical Libraries , Track 5, Hall 3, 9th July 15:45
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ROOT::RVec<T> In Action
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Already integrated 
with RDataFrame
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The Future



Distributed Analysis

16

Investigate and prototype a complement to PROOF

▶ Parallelism on many nodes
▶ Transparent distribution
▶ Support several different backends

shravan97/PyRDF

Minimal/No change 
in analysis code 

Not in 6.14 
Working 
prototype 
available!
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d = RDataFrame (“t”, dataset)
f = d.Define(...)
     .Define(...)
     .Filter(...)
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https://github.com/shravan97/PyRDF


Support for Heterogeneity
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Key element of future HEP software and computing

▶ TMVA already takes advantage of CUDA (DNNs)

Work ongoing to access NVidia devices from ROOT’s interpreter:

▶ Allow to interpret CUDA code

● gKernel1<<<1,1>>>(deviceOutput1);

● More than plans: pieces already in ROOT master branch!

▶ Supports templates, runtime shared memory

Thanks to Simeon Ehrig for diving into the Cling-CUDA integration work! 
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https://github.com/root-project/cling/tree/master/test/CUDADeviceCode


Conclusions

ROOT: getting ready for the HL-LHC, also through parallelisation

▶ Emphasis on programming model, runtime and scaling

Substantial parallelism delivered in ROOT 6.14

▶ Scaling at the level of ad-hoc solutions written by experts
▶ Boost CMS amount of evts/s processed
▶ Parallelism in TMVA and fitting: factors can be achieved

Many opportunities ahead of us

▶ Provide a distributed system to further scale
▶ Embrace heterogeneity
▶ Drive renovation of ROOT with natively parallel components only
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