
https://root.cern

ROOT
Data Analysis Framework

A Parallelised ROOT for
Future HEP Data Processing

D. Piparo (CERN, EP-SFT) for the ROOT team

https://root.cern

This talk

▶ Challenges ahead of us
▶ ROOT’s approach to parallelism
▶ Parallel components
▶ The future

● Distributed analysis
● Heterogeneous platforms

2

Unless explicitly
stated, everything

available in ROOT 6.14!

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

Opportunities Ahead of Us

▶ HL-LHC: Challenge for data processing and analysis SW
● In both areas ROOT is a key component

▶ Parallelism: not the solution, a prerequisite

▶ Find and create opportunities for parallelism in ROOT
● Replace components for which evolution is not possible

● Provide programming model which makes scientists productive - cannot

require too broad technical skill set from neophytes

3D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

ROOT’s Approach to Parallelism

Parallelism in ROOT

Implicit parallelism: operations run in parallel w/o user’s intervention

▶ Just invoke ROOT::EnableImplicitMT()
▶ Task based backed by multithreading, TBB library in the backend

● Must not overcommit node, can share pool with other libraries
▶ Data parallelism: 1st class citizen (VecOps) with vectorisation support

Explicit parallelism: user expresses parallelism, ROOT provides low level
tools to do that efficiently

▶ Map, MapReduce helpers (T{Process,Thread}Executor)
▶ Forking based multiprocessing backend in ROOT
▶ Mutexes, async launcher

5D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

Classic Interfaces

6

● Get a dataset in a file
○ Columns: px, py, E (collections)

● Fill a histogram with square sum of
px and py for entries where E >100

Imperative way, explicit double loop

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

Ergonomic Interfaces

7

Declarative, type safe, jit to simplify, task
parallelism, vectorised operations on collections

Runs in parallel! Collections, operations vectorised
A cut

See E.Guiraud RDataFrame: Easy Parallel ROOT Analysis at 100 Threads, Track 6, Hall 9, 10th July 11:45
D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://indico.cern.ch/event/587955/contributions/2937534/

Parallelised Components

What is Implicitly Parallelised?

9

ROOT::EnableImplicitMT() activates parallelised:

▶ RDataFrame event-loop

▶ TTree::GetEntry read of multiple branches

▶ TTree::FlushBaskets write of baskets

▶ TTreeCacheUnzip decompression of TTreeCache content

▶ TH{1,2,3}::Fit evaluation of the objective function over the data

▶ TMVA::DNN trains NN in parallel

And more to come!
D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://root.cern/doc/master/namespaceROOT.html#a06f2b8b216b615e5abbc872c9feff40f
https://root.cern/doc/master/classROOT_1_1RDataFrame.html
https://root.cern/doc/master/classTTree.html#a9fc48df5560fce1a2d63ecd1ac5b40cb
https://root.cern.ch/doc/master/classTTree.html#a211dc76caa325df4e820d86c3f17319d
https://root.cern/doc/master/classTTreeCacheUnzip.html
https://root.cern/doc/master/namespaceTMVA_1_1DNN.html

IMT Effect On CMS Data Processing

10

Activate Implicit MT:
+43% Throughput

Add Parallel Writing:
+13% Throughput

18% away from asymptotic
value (not filling nor writing

output datasets)

D. S. Riley, CMS And ROOT IO, ROOT IO Workshop, 20 June 2018, CERN
See G. Amadio Writing ROOT Data in Parallel with TBufferMerger Track 5, Hall 3, 10th July 12:15

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://indico.cern.ch/event/715802/contributions/2942558/
https://indico.cern.ch/event/587955/contributions/2938149

11

ROOT Can Scale Well on Extreme Architectures

Knightslanding

20 40 60 80 100 120 140 160 180 200
Cores

500

1000

2000

2500

1500

E
ve

nt
s/

s

No IO, KNL, 64 Physical cores
Monte Carlo QCD low-pt events
generation+analysis on the fly

Ad-hoc implementation (patched
ROOT5 & POSIX threads) Vs
RDataFrame

Original code by experienced
developer (R. Brun), intentionally not
thread safe (RDF always is)

Extreme Architectures

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

Spotlight on TMVA parallelism

12
See K.Albertsson New ML Developments in ROOT/TMVA , Track 6, Hall 9, 9th July 11:15

BDT’s: implicit parallelism

▶ Specific operations in tree construction process
▶ x 1.6 speedup for 4 threads

Cross Validation: multiprocessing based

▶ Evaluate each fold independently
▶ Almost linear scaling!

And of course, Cuda based implementation of DNNs in TMVA

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://indico.cern.ch/event/587955/contributions/2937501/

Spotlight on Math parallelism

13

Evaluation of objective functions is parallelised and vectorised

▶ Adapt TF1, TFormula, fitting internal classes
▶ Leverage ROOT::Double_v SIMD type - based on VecCore
▶ AVX2, 2x2 cores: factor 10x not uncommon!

Introduced ROOT::RVec<T>: vectorised operations made easy

▶ std::vector like interface, ergonomic support of analysis operations
▶ Can adopt memory or own it
▶ Vectorised arithmetic operations, math functions

See also L. Moneta Vectorisation of ROOT Mathematical Libraries , Track 5, Hall 3, 9th July 15:45

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://indico.cern.ch/event/587955/contributions/2938041/

ROOT::RVec<T> In Action

14

Already integrated
with RDataFrame

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

The Future

Distributed Analysis

16

Investigate and prototype a complement to PROOF

▶ Parallelism on many nodes
▶ Transparent distribution
▶ Support several different backends

shravan97/PyRDF

Minimal/No change
in analysis code

Not in 6.14
Working
prototype
available!

CPU

d = RDataFrame (“t”, dataset)
f = d.Define(...)
 .Define(...)
 .Filter(...)

h1 = f.Histo1D(...)
h2 = f.Histo1D(...)
h3 = f.Histo1D(...)

Local

Spark

SSHW
or

kf
lo

w
G

en
er

at
or

D
is

tr
ib

ut
or

.
.

.

CPU

CPU

CPUCPU

CPU

CPU

CPU

CPU

CPU

D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://github.com/shravan97/PyRDF

Support for Heterogeneity

17

Key element of future HEP software and computing

▶ TMVA already takes advantage of CUDA (DNNs)

Work ongoing to access NVidia devices from ROOT’s interpreter:

▶ Allow to interpret CUDA code

● gKernel1<<<1,1>>>(deviceOutput1);

● More than plans: pieces already in ROOT master branch!

▶ Supports templates, runtime shared memory

Thanks to Simeon Ehrig for diving into the Cling-CUDA integration work!
D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

https://github.com/root-project/cling/tree/master/test/CUDADeviceCode

Conclusions

ROOT: getting ready for the HL-LHC, also through parallelisation

▶ Emphasis on programming model, runtime and scaling

Substantial parallelism delivered in ROOT 6.14

▶ Scaling at the level of ad-hoc solutions written by experts
▶ Boost CMS amount of evts/s processed
▶ Parallelism in TMVA and fitting: factors can be achieved

Many opportunities ahead of us

▶ Provide a distributed system to further scale
▶ Embrace heterogeneity
▶ Drive renovation of ROOT with natively parallel components only

18D. Piparo - Parallelised ROOT for Future HEP Data Processing - CHEP18

