
RESEARCH POSTER PRESENTATION DESIGN © 2015

www.PosterPresentations.com

• While the training task of deep neural network (DNNs) has been largely
explored on GPUs and many-core processors for improving speedup, the
inference task of DNNs on field-programmable gate array (FPGAs) remains a
highly growing area of interest - for example, in real-time or streaming
applications like image recognition

• FPGAs, a set of reconfigurable hardware logic, provide accelerated
performance and energy efficiency for specific applications such as DNNs,
however it is quite difficult to develop optimized FPGA accelerators for such
applications while deploying them at scale in datacenters

• This work is an effort to derive a scheme for the efficient deployment and
scaling of DNN models on FPGAs for scientific workloads

Introduction

Methods

Benchmarking

Discussions

Summary
• Preliminary results of image recognition on field-programmable gate arrays

(FPGAs) indicate that FPGAs are efficient for DNN inference

• FPGA microbenchmarking (memory, throughput, etc.) can provide good
hindsight towards performance tuning; 10G network latency not a
performance bottleneck – but further experiments are required

• Data transfer overhead (over PCIe) can be amortized by choosing appropriately
sized buffers. 1024x1024 matrices indicate most efficient performance on
Stratix-5 FPGA

• OpenCL™ programming model and CBD present opportunities for making
FPGAS more widely accessible to traditional software developers; less design
effort at minimal performance degradation [1]

• Various FPGA interconnection networks present opportunities for exploring a
variety of neural network architectures, both current and emerging

• Emerging FPGA devices (with floating-point units) are also important for
accelerating several DNN computations within the node level

Future Directions
• Algorithmic: research and development of a parallel programming model for

graph-based partitioning of compute nodes

• FPGA-as-a-service: FPGA microservices for hyperscaling of accelerated services
with fault-tolerance

• Deployment model: containers and Kubernetes orchestration for datacenter-
wide deployment

• New set of devices

• PAC / Stratix-10 FPGA

David Ojika, Varad Ghate, Herman Lam, Ann Gordon-Ross, Bhavesh Patel, Roland Kunz

Simplified Computing Framework for FPGA-Accelerated Workloads

FPGA Development

• High-level synthesis (HLS): Use OpenCL™ to build compute kernels for faster
development versus register transfer logic (RTL) method

• Component-based design (CBD): Optimize specific compute kernels (e.g. matrix
multiplication) by using vendor-specific extensions (e.g. loop pipelining, etc.)

Performance-Guided Scale-Out

or

dataset
labels

• Derive relationship between platform’s theoretical
performance versus microbenmarking performance
• Several issues need to be addressed:

▪ Arithmetic throughput (kernel performance)
▪ Memory sub-system
▪ OpenCL runtime overheads
▪ End-to-end latency (via interconnection network)
▪ Resource utilization and power

Use developed scheme to guide scale-out to neighbor FPGA(s)

Deploy rapidly trained model to FPGA

ComputationIntranode Communication

Porting of AlexNet Model (Single FPGA)

23rd Conference on High Energy and

Nuclear Physics - CHEP 2018

Sofia, Bulgaria.

Memory Bandwidth
• PCIe data transfer mechanism with OpenCL can either improve or hurt performance

• Choice of transfer size, implicit vs. explicit transfers
• Implicit transfer of less than 1024x1024 matrices yields best results

PCIe

H
o
s
t

RTL vs. OpenCL
• Matrix-Mult: Execution time of RTL implementation much better than OpenCL –

but only for large metrices; smaller matrices show comparable performance
• Much lower design flow and design effort with OpenCL

Network Latency
• < 0.5 uS
• Ethernet header removed by OpenCL
• Requires OpenCL board support package

OpenCL Initialization Overhead

OpenCL-based high-frequency trading (HFT) platform [5]

MB/s

Arria-10
• Batch size: 16
• Kernel runtime: 421.8 ms.
• Avg. process time per batch: 26.4 ms.
• Total floats read: 61,063,552
• Bytes of image read: 618, KB

Resource Usage

References

[1] D. Ojika, P. Majcher, W. Neubauer, S. Subhaschandra and D. Acosta, "SWiF: A Simplified

Workload-Centric Framework for FPGA-Based Computing," 2017 IEEE 25th Annual

International Symposium on Field-Programmable Custom Computing Machines (FCCM), Napa,

CA, 2017

[2] A. M. Caulfield et al., "A cloud-scale acceleration architecture," 2016 49th Annual

IEEE/ACM International Symposium on Microarchitecture (MICRO), Taipei, 2016.

[3] U. Aydonat, S. O'Connell, D. Capalija, A. C. Ling, and G. R. Chiu. "An OpenCL™ Deep

Learning Accelerator on Arria 10," in Proc. FPGA 2017.

[4] Dong Wang, Jiangjing An and Ke Xu, “PipeCNN: An OpenCL-Based FPGA Accelerator for

Large-Scale Convolution Neuron Networks”, https://arxiv.org/abs/1611.02450, 2016.

[5] “OPRA FAST Parser Design Example”, www.altera.com

Model Topology

Resource Usage (Arria-10)

AlexNet Model on Arria-10 FPGA
• Convolution kernel most compute intensive (~ 89% of kernel computation time)

• OpenCL-based DNN kernels portable to multiple vendor platforms (Xilinx, Intel)

• Parallelization: room for improvement across multiple FPGAs (both model and data parallelism)

Interconnection Network

Ring
Tens of nodes

• Variety of interconnection networks for multi-node FPGA architectures
• Workload partitioning scheme depends on underlying interconnection network

and size of nodes Torus Switch
Hundreds of nodes Thousands of nodes

Training

Inference

