
The ATLAS multithreaded offline framework

Scott Snyder
On behalf of the ATLAS Collaboration

Brookhaven National Laboratory, Upton, NY, USA

July 10, 2018
CHEP 2018

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 1 / 15

Introduction

LHC Run 3 will start in 2021, producing more data than ever before.

Clock speeds have plateaued. Processors are getting wider vector
units and more cores.

Memory prices not been decreasing much recently.

Expect ratio of memory to cores to decrease.

Can’t continue to keep cores occupied simply by running multiple jobs
on one machine. Need to reduce memory required per core.

1970 1980 1990 2000 2010 2020
Year

3−10

2−10

1−10

1

10

210

310

410

510

610

U
S

$/
M

B

Historical memory prices

Source: J. McCallum <jcmit.net>

Historical memory prices

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 2 / 15

AthenaMP
For Run 2, ATLAS reduced memory requirements via multiprocessing.

A job forks subprocesses to process events in parallel. Memory is
shared automatically via copy-on-write.

Yields significant memory savings but not sufficient for Run 3.

Go to a fully multithreaded solution.
Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 3 / 15

Athena framework

Based on Gaudi package
shared with LHCb and others.

“Whiteboard” pattern

Sequence of Algorithms
communicating via event
store.

Algorithms may own Tools and
use (singleton) Services.

Fixed Algorithm sequence, set
in job configuration.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 4 / 15

AthenaMT: Intra-event parallelism

Task scheduling based on the Intel
Thread Building Blocks library with a
custom graph scheduler.
Algorithms declare their inputs and
outputs.

Scheduler finds an algorithm
with all inputs available and
runs it as a task.

“Data flow.”

Flexible parallelism within an event.

Can still declare sequences of algo-
rithms that must execute in fixed
order (“control flow”).

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 5 / 15

AthenaMT: Inter-event parallelism

Allow multiple event stores (“slots”).

Allows parallelism both within and event and between events.

Number of simultaneous events in flight is configurable.

Different shapes: different algorithms; different colors: different events.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 6 / 15

Algorithm dependency declarations

Algorithm data dependencies declared via special properties (HandleKey).

SG::WriteHandleKey<X> m_xKey { this, "XKey", "x" };

Used together with an event context that identifies the particular event
slot being used:

SG::WriteHandle<X> x (m_xKey, ctx);

ATH_CHECK(x.record (std::make_unique<X>()));

// Can modify the object until the WriteHandle is deleted.

x->set (something);

Context argument may be omitted — will then be read from a thread-
local global.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 7 / 15

Algorithm types
By default Algorithms are singletons, and a given algorithm cannot be
executing simultaneously in more than one thread.

Algorithms may be declared clonable. Multiple copies of the Algorithm are
made and can be executing simultaneously.

virtual StatusCode execute();

Algorithms declared reentrant are singletons but may execute in multiple
threads. Any internal mutable state must be thread-safe.

virtual StatusCode execute r(const EventContext&) const;

Services are singletons and
must be explicitly thread-safe.

Tools obey the same rules as their owning Algorithms. Services are singletons and must be explicitly thread-safe.
Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 8 / 15

Conditions

Calibrations, etc. depending on event number or time.
Different events may use different conditions versions.

Conditions store holds potentially multiple versions of conditions objects.

CondInputLoader algorithm loads needed conditions for each event.

To apply a transforma-
tion to conditions data,
use a ‘conditions algo-
rithm’ acting on data in
the conditions store.

Algorithms access condi-
tions data via handles.

Scheduler knows about dependencies and schedules them accordingly.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 9 / 15

Trigger
Want high-level trigger to use the same algorithms as the offline code.
For performance, trigger does reconstruction only within geometrically
limited regions of interest (ROI).

EventView: Stores data for one ROI and implements the same interface
as the full event store.

Algorithms that access data via handles can transparently run in an
EventView rather than the full store.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 10 / 15

Algorithm/tool/service migration

Algorithms/tools need to change to handles to access
event/conditions data.

Change to using conditions algorithms rather than callbacks.

Event data must not be modified once recorded in the event store.

Avoid thread-unfriendly code: use of statics, const-correctness
violations.

Services need to be explicitly thread-safe.

Reentrant algorithms that have mutable data must be explicitly
thread-safe.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 11 / 15

Thread-safety static checker

Have a static checker available to flag some thread-safety problems.
I Mostly relating to const-correctness and use of static data.

Set of checks similar to that done by the CMS checker.
I But implemented within gcc rather than clang, so they can run as part

of the default build.

Gives warnings like:

ArenaSharedHeapSTLAllocator.icc:499:10: warning: Static

expression ’SG::ArenaSharedHeapSTLAllocator<Payload>::s_index’

passed to pointer or reference function argument of

’SG::ArenaHeapAllocator* SG::ArenaSharedHeapSTLHeader::get_pool(size_t&) [with T = Payload]’

within function ’void SG::ArenaSharedHeapSTLAllocator<T>::get_pool() const [with T = Payload]’;

may not be thread-safe.

m_pool = m_header->get_pool<T> (s_index);

Also has checks related to naming conventions and other coding style
issues.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 12 / 15

Status/schedule

Q4 2017: Migrate all algorithms to use handles.
I Largely done. A few stragglers still to fix.

Q2 2018: Use conditions handles; replace callbacks with conditions
algorithms.

I Done for many conditions which are expected to actually change during
a run for inner detector/calorimeter.

I Have successfully run fully MT jobs for calorimeter system
reconstruction.

Q4 2018: Tools are const-correct; services are thread-safe. Raw-data
unpacking works in MT jobs.

Q1 2019: Remove use of incidents.

2019: Thread-safety debugging; preliminary validation and
performance fixes.

2020: Detailed validation and integration. Further performance
improvements.

Q1 2021: Run 3 starts.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 13 / 15

Scaling behavior

Preliminary CPU/memory scaling for calorimeter-only reconstruction
with 8 physical cores.

Writing output is a known bottleneck — disabled for this test.

CPU scaling promising, but still some instances of lock contention to
resolve. Memory increases very modestly with number of threads.

0 1 2 3 4 5 6 7 8 9 10
Number of threads

2

4

6

8

10

12

14

16

E
ve

nt
s/

s

Event throughput (calo only)
ATLAS preliminaryIdeal scaling

8 physical cores

Event throughput (calo only)

0 1 2 3 4 5 6 7 8 9 10
Number of threads

0.5

1

1.5

2

2.5

3

3.5

4

M
em

or
y

(G
B

)

Memory (calo only)
ATLAS preliminary

61.0 MB/core

Memory (calo only)

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 14 / 15

Summary

ATLAS is redesigning its offline and trigger software to cope with
increasing amounts of data and expected future trends in hardware.

Reconstruction is becoming fully multithreaded.

Gaudi development reinvigorated with contributions from multiple
experiments.

Migration is well underway.

Some selected pieces of the reconstruction already work in a fully
multithreaded job.

Expect to have full reconstruction working in 2019 to be ready for
Run 3 in early 2021.

Forms a basis for further evolution for the HL-LHC era and beyond.

Scott Snyder (BNL) The ATLAS multithreaded offline framework July 10, 2018 15 / 15

