
Co

A NEW APPROACH FOR ATLAS ATHENA JOB
CONFIGURATION
23rd INTERNATIONAL CONFERENCE ON COMPUTING IN HIGH
ENERGY AND NUCLEAR PHYSICS - 19-13 JULY 2018, SOFIA

Walter Lampl (University of Arizona)
on behalf of the ATLAS Collaboration

A bit of history …
Until 2003: Pure text job-options, almost no
programming-language capabilities.
2004: Switch to python with some tweaks to ease
backward compatibility with text job-options. Includes
a global name-space.
2008/09: Introduce the concept of AutoConfiguration.
The full power of the python language is used.
Since then: The job configuration code grew
increasingly messy and unmaintainable over the
years.
2018: Proposal to replace the job configuration
(presented here).

Co

Basic principles of the new system:
No global namespace! Configuration is produced
by python functions with arguments and return
values.
Self-containment: The configuration of each
component contains the configuration of all other
components it needs to work.

• Typically by calling other configuration functions
• Implies that the configuration of an event-

processing algorithm is standalone run-able (as
long as the input can be read from a file).

Composability: Bigger jobs are assembled from
smaller configuration fragments.
Deduplication: Many basic components will be
declared multiple times. Explicit step to drop (or
reconcile) duplicates.

Co

Configuration Flags:
Container of key-value pairs steering the configuration.
• Examples: real data or MC, cut-values, turning

corrections on/off.
• Flags are passed through the call chain from top-level

to each configuration method.
• Interdependence: Flag knows how to set itself based

on previously set flags if not explicitly set by the user.
• E.G. Flag steering a correction not applicable on

MC is turned off if the isMC-Flag is set.
Auto-configuration: Setting flags depending on the
input (data/MC, B-Field on/off, …).

Configuring what? The ATLAS offline software (Athena) consisting of thousands
of components (Algorithms, Services, Tools) written in C++.

Configuration: Assembling a subset of these components into an executable program,
respecting their interdependence. The configuration depends on the work-flow
(Simulation, Reconstruction, HLT, various calibration jobs, …) and the input data.

Co

Static vs dynamic configuration
• Athena jobs can be started from a static configuration

read from a file (python pickle), the configuration code
discussed here produces such a file.
• Generally done in one go

• Working only with static configurations is not practical.
• Too many possible combinations workflows and

inputs leading to too many different configurations.

LArCellCfg

LArBadChannelCfg

IOVDbSvcCfg

LArCablingCfg

Config of:
• BadChannelCondAlg
• LArCablingCondAlg
• IOVDbSvc with

folders for
BadChannels and
cabling

Configuration of:
• LArCablingCondAlg
• IOVDbSvc with folders

for cabling

AthConfigFlags
• isMC
• DatabaseInstance
• … many more things

De-Duplication:
• LArCablingCondAlg

dropped
• IOVDbSvc reconciled

Top-Level:

Co

In practice:
components=configFunction(flags,	args,	**kwargs)

Return value: Instance of
ComponentAccumulator
• Lists of algorithms,

service, etc.
• Merging-method

including de-duplication

Argument: Flags and
possibly more args and
kwargs

Function adding components
and setting their properties.
May call other config-functions

