
CHEP 2018

The archive solution for distributed
CMS WMAgents
Valentin Kuznetsov, Cornell University

CMS Computing

Collaboration: 3800 people, 199 institutions, 43 countries

CMSSW: 190K commits, 1800 releases, 16M lines of code

Code: C++, Python, C, Perl, Fortrans, Shell, Java, Go, …

Databases: ORACLE, CouchDB, MongoDB, …

Technologies: GRID, Cloud, XrootD, HDFS, Spark, ….

 During 2017:

deleted 85 PB (T1)/169 PB (T2) of
least popular datasets

replicated 20 PB (T1)/80 PB (T2) of most
popular datasets

transferred 4 PB/week with
average transfer rates 2-6 GB/s

produced 16 B MC events

processed 30 B raw events

 T0 T1 T2
Disk usage: 21 PB 39 PB 54 PB

 T0 T1
Tape usage: 49 PB 111 PB

kHS06-day T0 T1 T2
CPU usage: 326 425 1133

!2

CMS Data Management

!3

CMS
Data Management

PhEDEx

Dynamo

WMAgent

ReqMgr DBS

McM

CRAB

DAS
Data Aggregation System
simplify user search queries
across CMS data-services

CRAB is a utility to submit analysis jobs
to distributed computing resources

Workflow Manager Agents
responsible for splitting
work jobs into chunks and
sending them to CMS Global
pool (HTCondor).

Data Bookkeeping System
is CMS main data-catalog
for storing dataset, block,
files, runs, lumis meta-data

PhEDEx is a CMS data-transfer
management system.

Dynamo is dynamic data-placement system
moving PB of data among CMS sites.

Request Manager is
a main catalog for CMS
production
requests.

Monte Carlo Management
system handles all MC requests

CMS Workflow Management System

WorkQueue Request
Manager

Global pool
HTCondor

Site A

Site B

Site C

Site D

Jobs are distributed across GRID sites

Distributed WMAgents pull
down work from WorkQueue

WMAgents aggregate 500K docs/day

Job info are stored FrameWork JobReports

WMAgents send jobs to process
MC requests

All information about job are stored
into FrameWork JobReport (FWJR)

!4

Central Production System

Requirements

✤ ~300K docs/day (10KB each), 3GB/day, 2TB/year

✤ Flexible schema and ability to extend it over time

✤ unstructured JSON nested documents

✤ Flexible queries to look-up desired information

✤ Data aggregated across multiple metrics

✤ Web monitoring interface for job processing trends

✤ Have minimal impact on existing CMS infrastructure
!5

Choices

✤ We decided to use non-relational data stores

✤ Short-Term Storage is used to accumulate incoming data as fast as possible by storing them into
document oriented MongoDB

✤ Long-Term Storage is used to store data on HDFS file system

✤ We used JSON data-format for STS and Avro data-format for LTS

✤ data consumed in JSON data-format, i.e. no changes to CMS codebase

✤ data injected into HDFS in Avro (row-wise) data-format: schema evolution, language agnostic,
compressible, append-able,

✤ We defined WMArchive schema upfront and convert data from STS to avto-data format before storing it on
HDFS

✤ Separate data accumulation from data migration and clean-up procedure

✤ Interact with CMS DMWM stack via RESTful APIs

!6

REST
server

FWJR

Local
Disk

Avro
file

POST HTTP

HDFSMongoDB

cronjob:
clean-up old docs

cronjob:
collect docs from MongoDB
50K FWJR per single Avro file

cronjob:
push Avro files to HDFS

Aggregation
script

Spark
nodes

Avro in

JSON out

CERN
MONIT

Data sent
via AMQ

cronjob:
aggregate docs

FWJR

Agent

Agent

Agent

!7

Short-Term
Storage (STS)

Long-Term
Storage (LTS)

Migration
STS->LTS

Separate aggregation Pipeline

Data look-up

✤ For STS we rely on Mongo QL which supports reach syntax (query by value,
patterns, value look-up in a lists, etc.). Here is an example of its syntax:

 {“query”: {“Job”:re.compile(r”[a-z]+”, “X.Y.Z”:{“$in”:[1,2,3]}, …}

✤ For LTS we rely on HDFS+Spark and Map-Reduce paradigm

✤ user provide business logic to search or aggregate the data, we wrap it up
into Python Spark job

✤ Large data volume can be processed relatively fast:

✤ search results across one day of data in O(10) sec, one month of data in
O(100) sec

!8

Benchmarks

✤ STS: data injection rate 2KHz

✤ 1.5M documents translates into 15GB database size with 3.5 GB of index size

✤ LTS: data look-up via Spark job

✤ 1 day of data (200K docs) needs 1min, 2 month of data (12M docs) needs 1hour of
processing time

✤ Single doc compression: JSON (25KB) ⇒ BSON (16KB) ⇒ Avro (7KB) ⇒ Avro.gz (1KB)

✤ Multi-doc compression (use 10K docs): JSON (250MB) ⇒ BSON (160MB) ⇒ Avro
(70MB) ⇒ Avro.bz2 (352KB)

✤ Final choice we store about 50-60K docs per single Avro to fit into 256MB block file
constrain on HDFS

!9

Current status

✤ The WMArchive system in production more than two year

✤ one production and one testbed CERN VM (12 cores, 24GB RAM each)

✤ The data injection comes from 7 production WMAgent and 12 CRAB schedd nodes

✤ STS holds 3 months of data (tune-able parameter)

✤ We split STS/LTS into FWJR/CRAB collections

✤ STS holds 2 separate collections for incoming docs and 2 collections for daily/hourly
aggregated stats

✤ each document has an internal state to indicate life-time of it in STS

✤ STS to LTS migration is done separately upon block completion (1 block contains ~60K
docs and has 256MB size)

!10

✤ 7 production agents

✤ injection 24/7

✤ 100k-1M docs per day

✤ docs migrated from STS to LTS
once a day

✤ ~60k FWJR records per single
(256MB) AVRO file

✤ Up-to-date we have 350M docs
on HDFS (total size ~4TB)

WMArchive data rate

!11

●

●

●

●

●●●

●

●●●

●

●
●

●

●

●

●

●

●

●
●
●

●
●
●

●
●
●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●
●
●

●

●●

●

●●

●
●

●
●

●

●

●●●

●

●

●●

●

●

●

●

●
●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●
●

●
●
●

●
●

●
●

●●

●

●

●
●

●●

●

●●

●
●

●

●

●

●●●

●

●

●

●

●●●
●●

●

●●

●

●●
●

●

●●

●

●
●

●●

●

●

●●

●

●●

●

●

●

●
●
●

●

●
●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●●

●

●●

●

●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●
●

●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●●

●●

●
●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●
●
●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●
●

●

●●

●
●

●

0.01

0.10

1.00

2016−07 2017−01 2017−07 2018−01 2018−07
Dates

N
um

be
r o

f d
oc

s
(in

 m
illi

on
s)

type
●

●

crab

fwjr

FWJR/CRAB injection rates

Use cases

✤ WMArchive is used on daily basis by data-ops to identify problems with
running workflows

✤ identify failed workflow

✤ consult dashboard for problematic site

✤ identify issues by log look-up and exit codes

✤ Monitoring CMS production status

✤ sites, campaigns, throughput metrics

✤ Data aggregation use-cases
!12

Custom UI was designed
to address data-ops needs
for fine-grained queries:

• job state evolution
• event throughput
• exit codes and states
• workflow monitoring
• CPU, Storage, Memory metrics

CERN MONIT dashboards
provide global views of time
series metrics

!13

Custom cuts

Custom views

!14

Example

✤ Find log files in LTS for specific job/LFN while investigating failing workflows

✤ very cumbersome operation and require multi-pass operation look-up in WMArchive
document store

✤ file resolution (which file belong to which processing chain step)

✤ look-up log archive and log collect steps

✤ input/output file matching

✤ User provides a JSON file with input parameters

{“spec”:{“lfn”:”file.root”, “timerange”:[20180502,20180520]}}

✤ Run spark job to process O(M) documents, data-look-up time ~ few minutes

✤ we provide custom Map-Reduce code to perform this task efficiently on Spark platform

✤ results show location of tar-ball on EOS !15

Summary

✤ WMArchive consists of loosely coupled layers for meta-data storage and archiving

✤ we used different technologies to accommodate high-injection rate, schema
evolution, large data-volume, flexible QL and search capabilities

✤ custom UI along with global dashboards satisfies data-ops needs

✤ in 2 years we accumulated 300M docs and will hit 1B in HL-LHC era

✤ we didn’t experience any issues during production operation and run service on
a single node

✤ WMArchive opens up possibilities to study users patterns and predict users behavior

✤ it is part of larger effort in CMS to study resource utilization, see more in Gaining
Insight From Large Data Volumes with Ease poster by Valentin Kuznetsov

!16

