The archive solution for distributed

CMS WMAgents

Valentin Kuznetsov, Cornell University

CHEP 2018

CMS Computing

Collaboration: 3800 people, 199 institutions, 43 countries

TO T1 T2

During 2017:
Disk usage: 21 PB 39 PB 54 PB

processed 30 B raw events

TO T1

produced 16 B MC events Tape usage: 49 PB 111 PB

kHSO6-day TO T1 T2
CPU usage: 326 425 1133

transferred 4 PB/week with
average transfer rates 2-6 GB/s

deleted 85 PB (T1)/169 PB (T2) of
least popular datasets

" Databases: ORACLE, CouchDB, MongoDB, ...

replicated 20 PB (T1)/80 PB (T2) of most ’/’--,—- - Technologies: GRID, Cloud, XrootD, HDFS, Spark,
popular datasets

CMSSW: 190K commiits, 1800 releases, 16M lines of code

Code: C++, Python, C, Perl, Fortrans, Shell, Java, Go, ...

CMS Data Management

Dynamo is dynamic data-placement system
moving PB of data among CMS sites.

Dynamo

Workflow Manager Agents
responsible for splitting

work jobs into chunks and
sending them to CMS Gilobal
pool (HTCondor).

PhEDEX is a CMS data-transfer
management system.

Request Manager i(s: . CMS Dact:a BSookkeeping System
a main catalog for CM is CMS main data-catalog
production Data Management for storing dataset, block,
requests. files, runs, lumis meta-data

Data Aggregation System
simplify user search queries
across CMS data-services

Monte Carlo Management
system handles all MC requests

CRAB

CRAB is a utility to submit analysis jobs
to distributed computing resources

CMS Workflow Management System

Central Production System

Jobs are distributed across GRID sites

EEN '
' W
v WMAgents send jobs to process z Distributed WMAgents pull g :
MC requests down work from WorkQueue '
Site A :
Site B
T F Global pool T F z 4_ F WorkQueue T — Request
— HTCondor Give N — SEE R
Site C e e =
e All inf i bout job d 4
information about job are store z '
K
into FrameWork JobReport (FWJR) WiMagents aggregate 500K cocsiday :

Job info are stored FrameWork JobReports

Requirements

+ ~300K docs/day (10KB each), 3GB/day, 2TB/year

+ Flexible schema and ability to extend it over time n

< unstructured JSON nested documents

+ Flexible queries to look-up desired information
+ Data aggregated across multiple metrics
+ Web monitoring interface for job processing trends

+ Have minimal impact on existing CMS infrastructure

Choices

o

oo

We decided to use data stores

+ Short-Term Storage is used to accumulate incoming data as fast as possible by storing them into
document oriented MongoDB

+ Long-Term Storage is used to store data on HDFS file system
We used JSON data-format for STS and Avro data-format for LTS
+ data consumed in JSON data-format, i.e. no changes to CMS codebase

+ data injected into HDFS in Avro (row-wise) data-format: schema evolution, language agnostic,
compressible, append-able,

We defined WMArchive upfront and convert data from STS to avto-data format before storing it on
HDEFS

Separate data accumulation from data migration and clean-up procedure

Interact with CMS DMWM stack via RESTful APIs

Agent

Agent

Agent

POST HTTP

FWJR

——

cronjob:

clean-up old docs

Short-Term Migration
Storage (STS) STS->LTS

REST

b <> FWRR |[—> Af‘illreo
server

Local

MongoDB Disk

cronjob:

Long-Term
Storage (LTS)

cronjob:

push Avro files to HDFS

|

|

|

|

|

|

|

|

|

|

|

|

|

|

! collect docs from MongoDB
' 50K FWJR per single Avro file
|
|
|
|
|
|
|
|
|
|
1

Data sent { Aggregation
viaAMQ script

\
Avro In
<) Spark
nodes
JSON out

Separate aggregation Pipeline

cronjob:
aggregate docs

Data look-up

+ For STS we rely on Mongo QL which supports reach syntax (query by value,
patterns, value look-up in a lists, etc.). Here is an example of its syntax:

+ For LTS we rely on HDFS+Spark and Map-Reduce paradigm

+ user provide business logic to search or aggregate the data, we wrap it up
into Python Spark job

+ Large data volume can be processed relatively fast:

+ search results across one day of data in O(10) sec, one month of data in
O(100) sec

Benchmarks

+ STS: data injection rate 2KHz
<+ 1.5M documents translates into 15GB database size with 3.5 GB of index size
+ LTS: data look-up via Spark job

+ 1 day of data (200K docs) needs 1min, 2 month of data (12M docs) needs lhour of
processing time

+ Single doc compression: JSON (25KB) = BSON (16KB) = Avro (7KB) = Avro.gz (1KB)

+ Multi-doc compression (use 10K docs): JSON (250MB) = BSON (160MB) = Avro
(70MB) = Avro.bz2 (352KB)

+ Final choice we store about 50-60K docs per single Avro to fit into 256MB block file
constrain on HDFS

Current status

+ The WMArchive system in production more than two year

+ one production and one testbed CERN VM (12 cores, 24GB RAM each)
+ The data injection comes from 7 production WMAgent and 12 CRAB schedd nodes
+ STS holds 3 months of data (tune-able parameter)

+ We split STS/LTS into FWJR/CRAB collections

+ STS holds 2 separate collections for incoming docs and 2 collections for daily /hourly
aggregated stats

<+ each document has an internal state to indicate life-time of it in STS

+ STS to LTS migration is done separately upon block completion (1 block contains ~60K
docs and has 256MB size)
10

W MArchive data rate

o

&

7 production agents
injection 24 /7
+ 100k-1M docs per day

docs migrated from STS to LTS
once a day

~60k FW]R records per single
(256MB) AVRO file

Up-to-date we have 350M docs
on HDFS (total size ~4TB)

millions)

Number of docs (in

FWJR/CRAB injection rates

1.00 -

0.01-

2016-07 2017-01 2017-07 2018-01 2018-07
Dates

11

Use cases

+ WMArchive is used on daily basis by data-ops to identify problems with
running workflows

+ identity failed workflow

+ consult dashboard for problematic site

+ identity issues by log look-up and exit codes
+ Monitoring CMS production status

+ sites, campaigns, throughput metrics

+ Data aggregation use-cases

12

(] ® < [EH] f? (re] localhost:8888/wmarchive/web/performance?metrics[1=jobstate&me]) +

Custom UI was designed

'WORKFLOW TASK HOST SITE JOB TYPE

to address data-ops needs

for fine-grained queries:

600Kk

* job state evolution i!hilﬂ.lliﬂii!!l!.]llll“!h.“ b i

Jun 05, Jun12 Jun 19 Jun 26 Jul 03 Jul10 17 Jul2a Y Aug 07 Aug 14 Aug 21 Aug 28 Sep 04 Sept

e exit codes and states -

0:00:00
Jun 05, Jun12 Jun1e Jun 26 Jul 03 Jul10 17 Jul24 Jul31 Aug 07 Aug 14 Aug 21 Aug28 Sep 04 sept

e workflow monitoring
e CPU, Storage, Memory metrics

vocms0311.cern.ch 4,96m jobs (19,9%) vocms0116 3:39:35 (13175,0s)
vocms0309.cern.ch 3,64m jobs (14,6%) cmssrv218.fnal.gov 3:03:11 (10991,2s)
vocms0304.cern.ch 3,41m jobs (13,7%) vocms074.cern.ch 2:59:42 (10782,1s)
£ R
=
S cmssrv217.fnal.gov 3,01m jobs (12,1%) vocms0310.cern.ch 2:23:06 (8586,5s)
3
2
5 I
a vocms0310.cern.ch 2,68m jobs (10,8%) vocms0303.cern.ch 2:21:21 (8480,8s)
[<]
O-__7_----__-==___-______!=____ Show more... Show more..
12/31 12 1/4 1/6 1/8 110 1712 1714 116 118 1720 1722 1724 1726 1728
Show all Show all

- createfailed = failed = jobfailed = submitfailed - success

Exit codes

Exit codes

I.-_I lI ll III
172

12/31

e CERN MONIT dashboards

CMS sites Job states Exit steps

[\ values percentage | values percentage
- NoReportedSite 1.004 K 2.11% - CRITICAL 1.080 K 0.23%

- T1_DE_KIT 9.27K 19.46% = JobKilled 2.464K 0.53%
- T1_DE_KIT_Disk 22 0.05% - JobSubmit 988 0.21%
T1_ES_PIC 822K 17.26% NojJobReport 3.87K 0.83% ° °
T1_FR_CCIN2P3 6.00K 12.60% PerformanceError 1.807 K 0.39% S e rl e S m e trl C S
T1_IT_CNAF_Buffer NaN.nfinity 0.00% RemovedByGLIDEIN 656 0.14%
T1_RU_JINR R 8.}3K : 1748% R L .) __=—ao . §23K) 90.09%
g \ q .

Scope

daily

daily
hourly

Custom cuts

WORKFLOW TASK HOST

SITE JOB TYPE

T2_US* X

ACQUISITION ERA

Run2017G X

JOB STATE

I hourly

EXIT CODE EXIT STEP

TIMEFRAME

03/03/2018 - 04/02/20

Metrics

Event Throughput

Custom views

99.82% overall success rate

Job State Evolution

2k

T

Fri 09 Mar 11 Tue 13 Thu 15 Sat17 Mon 19 Wed 21 Fri 23 N

Event Throughput Evolution

400/s

200/s

Ofs @

Job State per Host

Top 5 Hosts

cmsgwms-submit4.fnal.gov

cmsgwms-submit5.fnal.gov

vocms0256.cern.ch

>

36.28k jobs (21.4%)

34.1k jobs (20.1%)

31.89k jobs (18.8%)

vocms0253.cern.ch

vocms0257.cern.ch

Show more...

31.86k jobs (18.8%)

24.21k jobs (14.3%)

Show all

Fri 09 Mar 11 Tue 13 Thu 15 Sat17 Mon 19 Wead 21 Fri23 Mar 25 Tue 27 Thu 28

14

Example

+ Find log files in for specific job/LFN while investigating failing workflows

+ very cumbersome operation and require multi-pass operation look-up in WMArchive
document store

+ file resolution (which file belong to which processing chain step)
+ look-up log archive and log collect steps
+ input/output file matching

+ User provides a JSON file with input parameters

{“"spec”:{"1fn”:"file.root”, “timerange”:[20180502,20180520]}}

+ Run spark job to process O(M) documents, data-look-up time ~ few minutes

= we provide custom Map-Reduce code to perform this task efficiently on Spark platform

< results show location of tar-ball on EOS

19

Summary

+ WMArchive consists of loosely coupled layers for meta-data storage and archiving

+ we used different technologies to accommodate high-injection rate, schema
evolution, large data-volume, flexible QL and search capabilities

+ custom Ul along with global dashboards satisfies data-ops needs
+ in 2 years we accumulated 300M docs and will hit 1B in HL-LHC era

+ we didn’t experience any issues during production operation and run service on
a single node

+ WMArchive opens up possibilities to study users patterns and predict users behavior

+ it is part of larger effort in CMS to study resource utilization, see more in Gaining

Insight From Large Data Volumes with Ease poster by Valentin Kuznetsov
16

