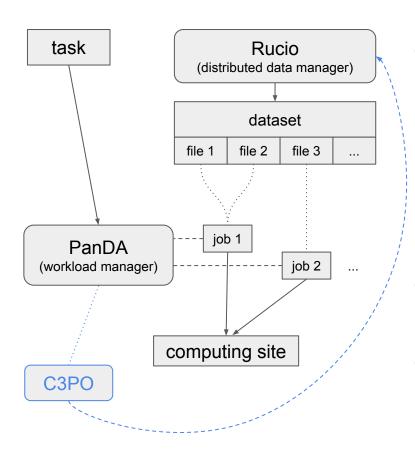
Performance and impact of dynamic data placement in ATLAS

Thomas Maier¹ on behalf of the ATLAS Collaboration

Co-authors: T. Beermann², G. Duckeck¹, M. Lassnig³, F. Legger¹, M. Magoni⁴, I. Vukotic⁵

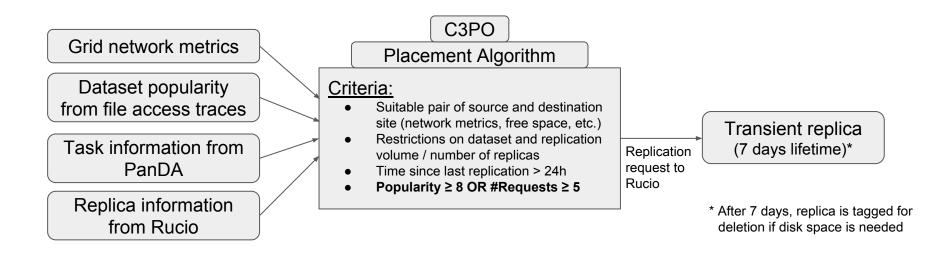
¹Ludwig-Maximilians-Universität München, ²Universität Innsbruck, ³CERN, ⁴Politecnico di Torino, ⁵University of Chicago

Introduction



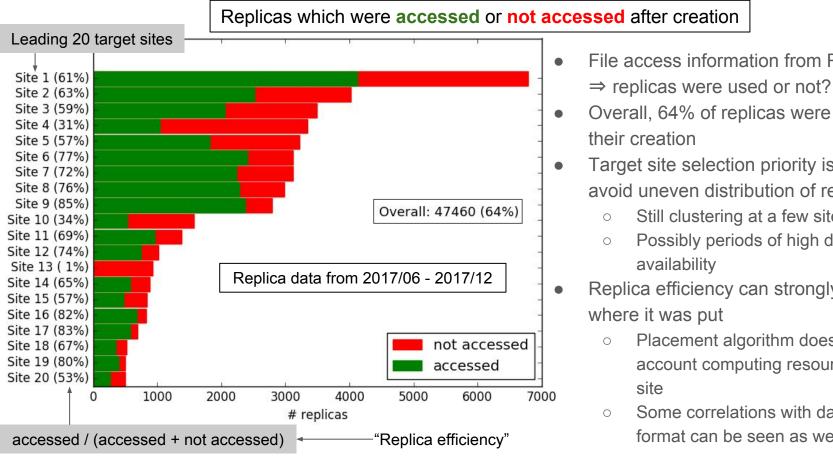
- Why dynamic data placement?
 - Input data popularity can vary heavily dependent on data type/format or time period
 - By default, numbers of dataset replicas are statically set ⇒ a given dataset is only available at a couple of computing sites
 - Temporary high demand of datasets can lead to delayed processing of jobs ⇒ high waiting times for physics analyses
- In ATLAS, new dynamic data placement agent C3PO
 was developed and operates during Run-2 → CHEP 2016
 contribution
- Analysis of C3PO performance and impact using the ATLAS/CERN analytics infrastructure (ElasticSearch, Kibana, Hadoop, etc.) → dedicated talk on ATLAS analytics platforms

C3PO - Dynamic data placement agent in ATLAS



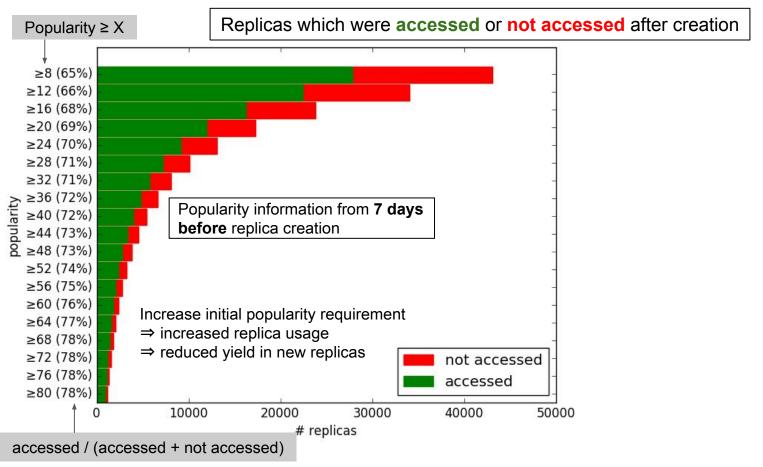
- <u>Popularity:</u> number of dataset accesses in the past 7 days
- #Requests: number of user analysis tasks that use the dataset as input, submitted in the past 24h

Replica usage after creation - Sites

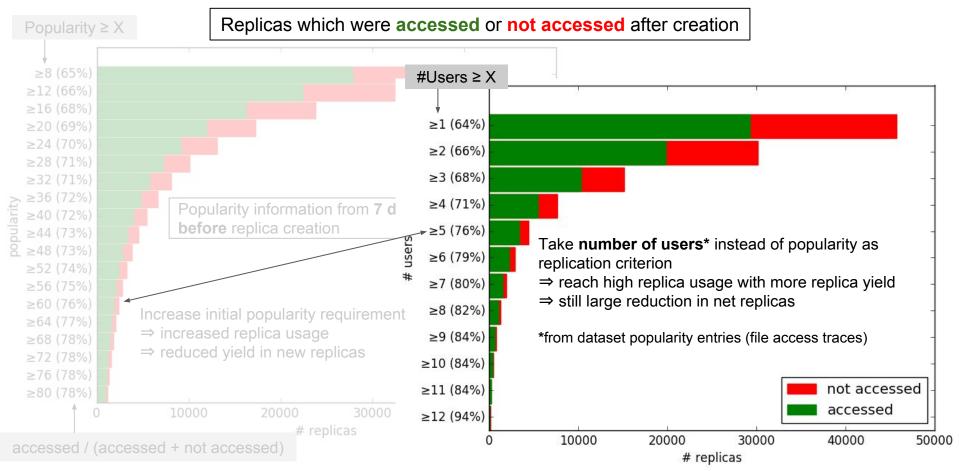


- File access information from Rucio traces
- Overall, 64% of replicas were used after
 - Target site selection priority is weighted to avoid uneven distribution of replicas
 - Still clustering at a few sites
 - Possibly periods of high disk space
 - Replica efficiency can strongly depend on
 - Placement algorithm doesn't take into account computing resources at target
 - Some correlations with data type or format can be seen as well

Replica usage after creation - Popularity



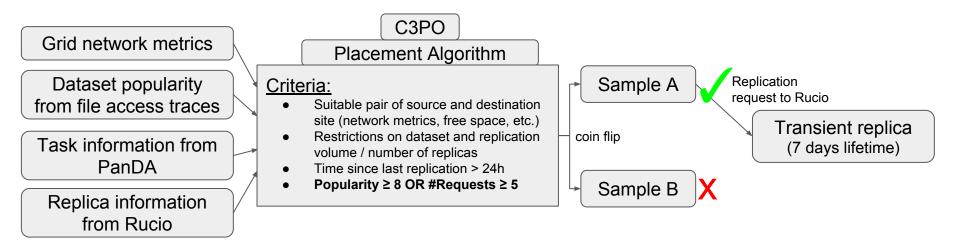
Replica usage after creation - Popularity



C3PO impact analysis

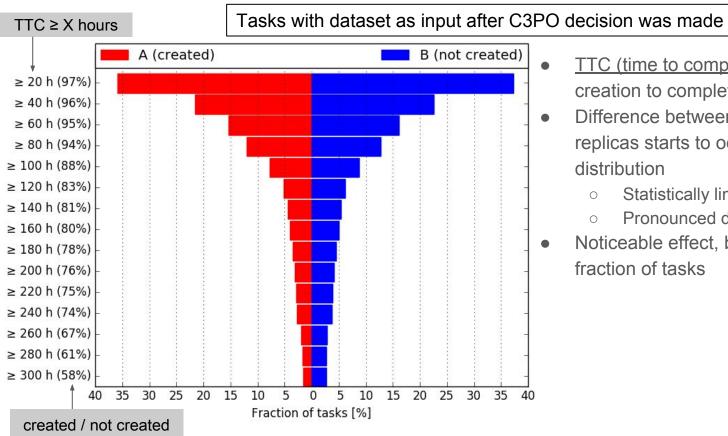
- Attempt to measure effect of C3PO operations on Grid throughput in terms of processed tasks and jobs
- Metrics like replica access after creation indicate how well C3PO selected popular datasets
 ← no gauge for impact on efficient Grid processing
- Main problem: measurement of metrics related to usage of C3PO selected datasets vs. other datasets doesn't really allow for a one to one comparison
 - ⇒ Decided to run C3PO in an A/B testing mode for a period of time

C3PO impact analysis - A/B testing



- Direct comparison of C3PO decisions being applied vs. not being applied
 - After positive C3PO decision: coin flip (based on dataset name)
 - Decisions split into Sample A (replica is created) and Sample B (replica is not created)
 - Test period ~1.5 months
- For datasets that fall into Sample A or Sample B, compare metrics that are affected by (temporary) inaccessibility of input data or high workload on sites

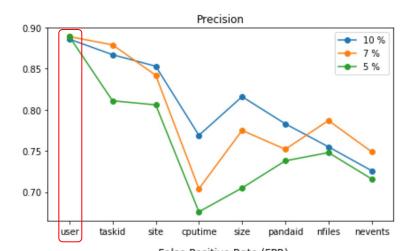
C3PO impact analysis - Task TTC

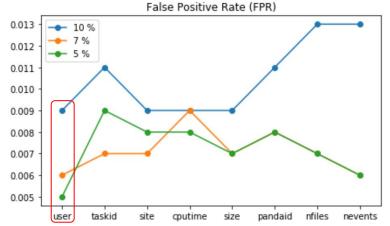


- TTC (time to completion): time from point of creation to completion of the task
- Difference between **created** and **not created** replicas starts to occur in the tails of the TTC distribution
 - Statistically limited
 - Pronounced difference only in long tails
- Noticeable effect, but concerns only a small fraction of tasks

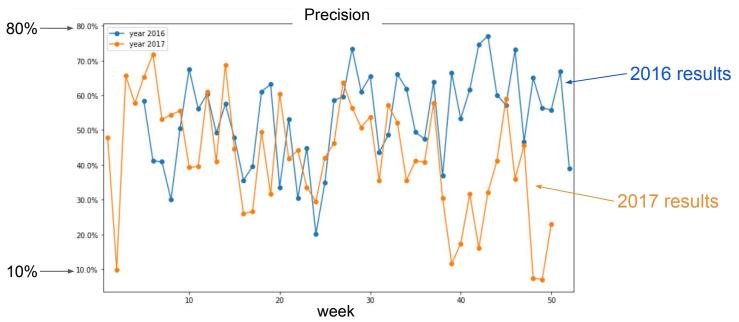
Popularity prediction with machine learning (1/2)

- Bachelors project by Matteo Magoni
 - Machine learning (Adaboost decision tree) for dataset popularity prediction
 - Evaluation of historic Grid jobs meta-data
- Variables used for training
 - o dsid: 6-digit dataset id
 - ptag: version tag of physics data
 - scope: data period / MC simulation campaign string
 - type: data format string
- <u>Popularity definition:</u> for a given parameter distribution, dataset falls into the tailing 10%/7%/5% (threshold cut)
- Selection of popularity parameter
 - evaluate data of June 2016 for several parameters (and the three threshold cuts)
 - choose number of users with 7% cut → highest precision (fraction of datasets predicted as popular that actually are popular)





Popularity prediction with machine learning (2/2)



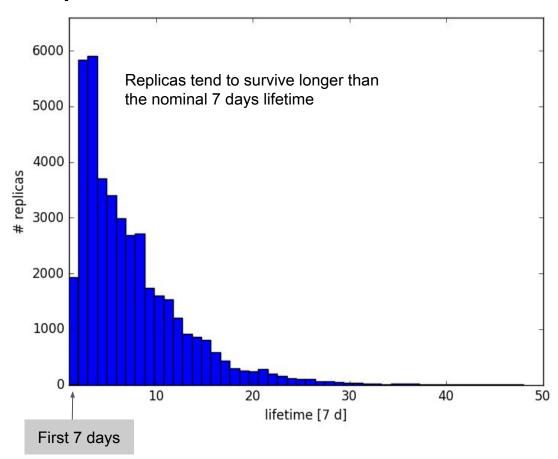
- Full evaluation of 2016/2017 data
 - o predict popularity of given week by training on data of previous 4 weeks
 - additional training input: popularity of previous 3 weeks
- In general high resulting precision, but quite large fluctuations → lack of sufficient amount of training data?
- Several options to explore in the future (increase training window, change hyperparameters, etc.)

Summary

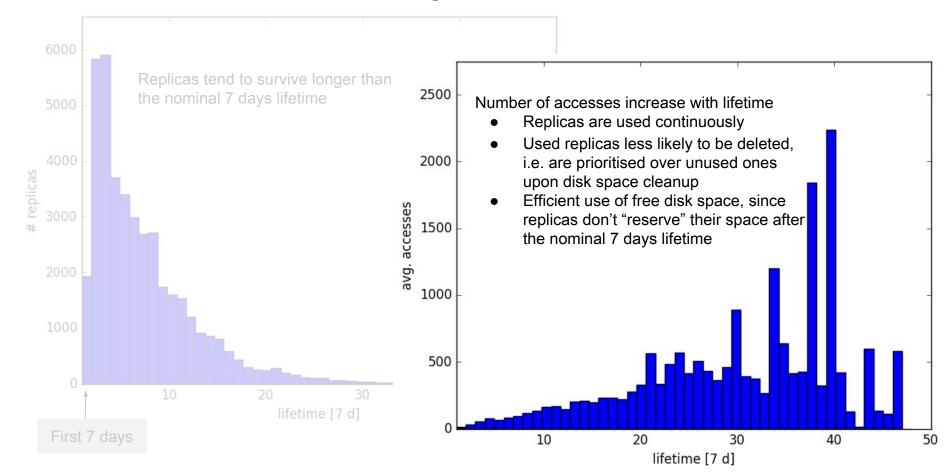
- Dynamic data placement agent C3PO
 - Developed and operational during Run-2 phase of ATLAS
 - Usage efficiency of resulting newly created replicas >60% (depending on parameters like target replication site, data type/format, etc.)
 - Altering initial C3PO decision criteria affects resulting usage probability
 - C3PO replicas tend to survive longer than nominal 7 days lifetime
 ← continuously accessed
 → efficient use of available disk space
- C3PO impact analysis with A/B testing
 - Metrics like task TTC indicate that replicas created by C3PO have some impact on Grid processing of their associated datasets
 - Only small effects (on very limited number of Grid tasks)
 - In general difficult to unambiguously attribute observed differences to C3PO replicas
- Popularity prediction with machine learning algorithms
 - Promising first results → multitude of options/methods to explore for improvements

BACKUP

Replica lifetimes



Replica lifetimes - average number of file accesses



C3PO impact analysis - job queue times

