Improving WLCG Networks Through Monitoring and Analytics

Edoardo Martelli, Marian Babik, Shawn McKee on behalf of WLCG Network Throughput WG

Outline

Network Performance

- Importance of measuring our networks
- OSG/WLCG activities and WLCG Network Throughput WG

Platform Overview

- WLCG perfSONAR Infrastructure
- OSG Network Monitoring Platform

Platform Use

- Activities and collaborations
- Network Throughput Support Unit
- Operations
- Evolution
- Summary

Importance of Measuring Our Networks

- End-to-end network issues are difficult to spot and localize
 - Network problems are multi-domain, complicating the process
 - Performance issues involving the network are complicated by the number of components involved end-to-end
 - Standardizing on specific tools and methods focuses resources more effectively and provides better self-support.
- Network problems can severely impact experiments workflows and have taken weeks, months and even years to get addressed!
- perfSONAR provides a number of standard metrics we can use
 - Latency, Bandwidth and Traceroute
 - These measurements are critical for network visibility
- Without measuring our complex, global networks we wouldn't be able to reliably use those network to do science

OSG/WLCG Networking Activities

- OSG is in its 6th year of supporting WLCG/OSG networking focused on:
 - Assisting its users and affiliates in identifying and fixing network bottlenecks
 - Developing and operating a comprehensive Network Monitoring Platform
 - Improving our ability to manage and use network topology and network metrics for analytics
- WLCG Network Throughput Working Group was established to ensure sites and experiments can better understand and fix networking issues:
 - Oversees the WLCG perfSONAR infrastructure
 - Core infrastructure for taking network measurements and performing low-level debugging activities
 - Coordinates WLCG network performance incidents runs a dedicated support unit which involves sites, network experts, R&Es and perfSONAR developers
 - Many issues are potentially resolvable within the working group

perfSONAR deployment

- 288 Active perfSONAR instances
- 207 production endpoints
- T1/T2 coverage
- Continuously testing over 5000 links
- Testing coordinated and managed from central place
- Dedicated latency and bandwidth nodes at each site
- Open platform tests can be scheduled by anyone who participates in our network and runs perfSONAR

Platform Overview

- Collects, stores, configures and transports all network metrics
 - Distributed deployment operated in collaboration
- All perfSONAR metrics are available via API, live stream or directly on the analytical platforms
 - Complementary network metrics such as ESNet, LHCOPN traffic also via same channels

Platform Use

WLCG and OSG operations

- Baseline testing and interactive debugging for incidents reported via support unit
- Regular reports at the WLCG operations coordination and WLCG weekly operations
- Providing Grafana dashboards that help visualise the metrics
- Enabling analytical studies data stored in the ATLAS Analytics platform
 - Providing an important source for network metrics (bandwidth, latency, path)
 - More on this in *Integrating Networking Into ATLAS* (this session)
- Cloud testing HNSciCloud testing commercial cloud providers
 - Baselining and evaluating network performance
- HEPiX IPv6 WG
 - Now testing bandwidth and paths over IPv6
- Collaboration with other science domains deploying perfSONAR
 - o E.g., US Universities, Pittsburgh Supercomputer Center, European Bioinformatics Institute
 - Also close collaboration with (N)RENs who provide LHCONE perfSONAR coverage

WLCG Network Throughput Support Unit

Support channel where sites and experiments can report potential network performance incidents:

- Relevant sites, (N)RENs are notified and perfSONAR infrastructure is used to narrow down the problem to particular link(s) and segment. Also tracking past incidents.
- Feedback to WLCG operations and LHCOPN/LHCONE community

Most common issues: MTU, MTU+Load Balancing, routing (mainly remote sites), site equipment/design, firewall, workloads causing high network usage

As there is no consensus on the MTU to be recommended on the segments connecting servers and clients, LHCOPN/LHCONE working group was established to investigate and produce a recommendation.

Operations Dashboards

- One of many dashboards provided showing LHCOPN/ESNet, perfSONAR, FTS, etc.
- Above is a sample dashboard showing side-by-side comparison of perfSONAR data, LHCOPN traffic and FTS transfers
- Also available with ESNet traffic data

Evolution

- Platform evolution will be mainly driven by the next release of perfSONAR
 - Version 4.1 will become available soon
- New Endpoint control capabilities
 - Many more options on what can be centrally managed on a per-instance basis
- Improved pScheduler better stability and performance
- Resource management port pools
 - Preemptive scheduling support improving client response time
- New plugins
 - Network traffic capture (via SNMP)
 - Application-level (e.g. http response time)
- TWAMP support (two-way active measurement)
 - ping alternative of owamp routers/switches can participate in the tests
- **Docker support** for testpoint

Summary

- OSG in collaboration with WLCG are operating a comprehensive network monitoring platform
- Platform has been used in a wide range of activities from core OSG/WLCG operations to Cloud testing and IPv6 deployment
- Providing feedback to LHCOPN/LHCONE, HEPiX, WLCG and OSG communities
- Next version of perfSONAR will enable additional functionality as well as improve overall stability and performance
- Further analytical studies are planned to better understand our use of networks and how it could be improved
 - Potential use for experimental network activities, e.g. TCP BBR evaluation, understanding behaviour of mixed UDP/TCP flows, etc.

References

- OSG/WLCG Networking Documentation
 - https://opensciencegrid.github.io/networking/
- perfSONAR Stream Structure
 - http://software.es.net/esmond/perfsonar_client_rest.html
- perfSONAR Dashboard and Monitoring
 - http://maddash.opensciencegrid.org/maddash-webui
 - https://psetf.opensciencegrid.org/etf/check_mk
- perfSONAR Central Configuration
 - https://psconfig.opensciencegrid.org/
- Grafana dashboards
 - http://monit-grafana-open.cern.ch/
- ATLAS Analytics Platform
 - https://indico.cern.ch/event/587955/contributions/2937506/
 - https://indico.cern.ch/event/587955/contributions/2937891/

Networking Challenges

There are number of challenges in the networking, which will require improved collaboration with other sciences as well as HEP-focused R&D:

- Capacity/share for data intensive sciences
 - No issues wrt available technology, however
 - What if N more HEP-scale science domains start competing for the same resources?
- Remote data access proliferating in the current DDM design
 - Promoted as a way to solve challenges within experiment's DDM
 - Different patterns of network usage emerging
 - Moving from large streams to a mix of large and small frequent event streams
- Integration of Commercial Clouds
 - Impact on funding, usage policies, security, etc.
- Technology evolution
 - Software Defined Networking (SDN)/Network Functions Virtualisation (NFV)

Network Evolution Areas

The following are some of the key areas for HEP Networking R&D:

- Improving efficiency of data transfers
 - TCP BBR version 2 is in the works with promising improvements
 - Exploring alternative protocols for transfers (UDP)
- Caching
 - Data caches co-located with network hubs in a similar way as on commercial CDNs
- Federations/Clouds
 - Overlay networks spanning multiple domains
 - Multi-clouds expanding DC networking via L3VPNs
- Technology
 - SDN/NFV approaches currently looked at by HEPiX NFV WG
 - Compute Agile service delivery on Cloud Infrastructures (OpenStack, Kubernetes)
 - Data Transfers Network resource optimisation dynamically optimising the network based on its load and state (more in Shawn/Ilija)

