
Declarative 
Analysis 
Languages
G. Watts (UW/Seattle)

CHEP 2018
Sofia Bulgaria
July 9-13, 2018

http://chep2018.org/


What is an Analysis Language?

Raw Data Objects

Event Summary Data 
(ESD)

Analysis Object Data 
(AOD)

Analysis Language Tasks:
• Generate plots from a dataset
• Ratios from different datasets (efficiencies, etc.)
• Statistical Analysis (limit plots)
• Machine Learning
• Tables of numbers for publication

In use today:
• C++, ROOT
• Python, data science 

tools (including ROOT)
• Long tail: C#, Go, DSL’s 

etc.



Can We Do Better?
I tried…
I’d like to think I’ve learned some lessons…

The Physics: Search for a long lived particle 
decaying in the calorimeter

• Unique signature
• Weird calibration
• Messy QCD background

What was done in this framework?

• QCD Background studies
• Studies to select LLPs
• Eventual BDT training using TMVA

What would a language 
look like explicitly designed 
for particle physics data?

A language that explicitly 
supported both fast 
exploration and slower 
production?

A language that could easily 
scale from your laptop to a 
cluster with minimal change 
(or knowledge) by the 
analyzer?

A language that had a 
minimal amount of boiler 
plate?

http://cds.cern.ch/record/2219571/files/ATLAS-CONF-2016-103.pdf
https://arxiv.org/abs/1501.04020


Sense of Scale

Number of events (signal + background + control) ~ 2 billion

GRID Data Samples ~ 200

Size of input files 1-2 TB

Number of leaves in processed ntuples ~340

Plots made per job ~400-800

Number of users 1

Number of Developers 1

A small analysis by HL-LHC 
standards…

But a decent sized one for Run 1 
and Run 2



Physics Data

Event 1 Event 2 Event 3 Event 4 Event 5

Each event is a small hierarchical 
structured collection of data:
• Some # of electrons
• Some # of muons
• Missing ET value
• Run #
• Etc.

What do we want to ask of the 
data?
• Invariant mass of two highest 𝑝𝑇

good electrons
• Etc.

Take a ‘query’ and repeat it for each event!

These are very SQL 
like questions!!



Declarative Analysis

You write
What You Want To Do

The backend figures out
How To Do It

“The problems with 1000 
events are different from the 
problems with 1M events are 
different from the problems 

with 1B events”

But you still want to make the 
same plots…

SELECT * FROM
Production.Product
ORDER BY Name ASC;

Switch the backend out for 
1B events vs 1M events!

SQL Is a Declarative Language



C# and LINQ

events
.Select(e => e.Data.eventWeight)
.FuturePlot("event_weights", "Sample EventWeights",

100, 0.0, 1000.0)
.Save(hdir);

What we want to plot

1D Histogram Declaration

Save the plot in a file

Note: There is no explicit loop!

I chose Microsoft’s C# 
language due to built in 
SQL-like language, LINQ:
• Strongly typed
• LINQ is extensible to 

new backends by design
• Automatic tooling 

support
• Fully capable language 

with lots of Open 
Source libraries

• Statically typed



Version 1 Design

ROOTToLINQ
Analysis Library

ROOT
Query Execution

User Code

Data

All In Process

C++ TSelector Code
The Compiler

Host Language Analysis Language



Version 2 Design

ROOTToLINQ
Analysis Library

I

ROOT
Query Execution

User Code

Data

ROOTToLINQ
Analysis Library

II

ROOT
Query Execution

ROOT
Query Execution

C++ TSelector Code

C# OO 
Representation 
of SQL Query

Version 2: All Analysis Process Remote Processes

Host Language Analysis Language



Backend Design Thoughts
ROOT

Query Execution

Data

ROOTToLINQ
Analysis Library

II

ROOT
Query Execution

ROOT
Query Execution

C++ TSelector Code

C# OO 
Representation 
of SQL Query

Analysis Language

The Backend:
• Code for a specific backend (HPC, GPU, etc.)
• I have 4 implementations of the back end co-

existing
• Run locally on your laptop (in process?)
• Optimizations for specific types of problems
• Update independently of the analysis code
• Allows same analysis code to be run: no 

changes by analyzer!

The Role of the Host 
language and the Analysis 

Language



Analysis Language Wish List

Expressiveness:
• Implied loops over objects (jets, electrons)
• Remapping of data to build e.g. a muon 

object from a flat ntuple
• Build new structures on the fly
• Complex functions and math calculations
• Type system expressive enough to handle 

experiment’s AOD format
•

Operational:
• Capable of being transmitted over the wire
• Can be easily combined with other queries for 

efficiency
• Analysis server needs to support this

• Expressive and easy to parse by code

Analysis UI Capabilities



Analysis Language Wish List

Expressiveness:
• Implied loops over objects (jets, electrons)
• Remapping of data to build e.g. a muon 

object from a flat ntuple
• Build new structures on the fly
• Complex functions and math calculations
• Type system expressive enough to handle 

experiment’s AOD format
• Deal with leaky abstractions

Operational:
• Capable of being transmitted over the wire
• Can be easily combined with other queries for 

efficiency
• Analysis server needs to support this

• Expressive and easy to parse by code

Analysis UI Capabilities I bet we know enough about where and why this happens



Host Language Wish List

Expressiveness:
• Analysis language embeddable 

• As a string (can do)
• As actual code (better)

• Queue up and track multiple queries
• Manipulate returned objects
• Easy to read list of steps that are being taken 

to do the analysis

Operational:
• Backend library to translate queries into the 

Analysis language
• Library to handle return objects (histograms, 

numbers, etc.)

Possible examples:
• C#
• C++
• Jupyter Notebook/python

Analysis UI



Analysis Server
Goal:

One analysis language
Many host languages
Many analysis servers

Operational:
• Translate queries into efficient execution code
• Access to datasets

• Along with common way to refer to them
• Scheduler to queue up queries
• Query can be treated as a cache key to speed up 

common requests
• Result can be tagged with query to preserve operations 

that generated result
• Types of result

• May have to be transmitted across the wire
• Numbers, arrays, histograms, TTree’s and csv files 

(for ML).



Scalability & Status
Code can be found on github: https://github.com/gordonwatts/LINQtoROOT

• LINQ syntax is very well matched for HEP data analysis
• Decent way to express common histogram binning, etc.
• Code is composable: large complex queries from small ones
• Easy mapping features to map flat ntuple into structured ntuple
• Can deal with any type that ROOT has a dictionary for…
• PROOF like backend works

C# worked well too:
• Strongly typed after you declare ntuple
• Query syntax is part of the native language
• Caching works, but it is slow to generate a key

• C# has trouble managing multiple queries is 
hard (monad hell) – makes code ugly

• Running on multiple machines is fragile – why 
am I reinventing SPARK/PROOF/DASK!?

• Referring to datasets with a single name 
space across multiple machines hard to solve!

• Caching is only per-local machine
• Code optimization is… meh. At best.
• Backend has TSelector baked in for no good 

reason.

Time to move on from this experiment

Successes More Work Required



Conclusions
C# and LINQ based system works 
well

Produced one paper and one 
conference note, and soon a second 
paper

SQL-like analysis language is well 
suited to HEP data analysis

Caching idea works well
Makes it very quick to add a new plot 
without re-running old plots

Analysis Backend is a problem in 
need of further R&D

How are datasets specified to mean the 
same thing no matter where you are?

Multiple-machine running needs a real 
backend

What is next?
Take a step back and design a real 
system with this knowledge

Additional features – ML Training

Design it for more than just me to use


