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Kaplan, Rehermann, Schwartz, Tweedie ‘08

TO p ta g g i n g Plehn, Spannowsky, Takeuchi, Zerwas ‘10
Reconstructing highly-boosted top decays

e Easy to reconstruct
tops when decay
products are well-
separated

e But standard
reconstruction
methods fail when
tops are highly-
boosted

e |nstead of trying to
resolve decay
products individually,
merge all into “fat jet”

* By now this is well-
understood experimentally
and theoretically 5



We see something like this

+ Run: 271516
" Event: 7786087
2015-07-13 09:38:38 CEST




de Olivera, Kagan, Mackey, Nachman, Schwarzmann ‘15

Jets as Images

Can recent advances in DNNs benetfit jet physics?

Kasieczka, Plehn, MR, Schell ‘17
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Jets as Images

Test performance against traditional taggers and BDT

Kasieczka, Plehn, MR, Schell ‘17

logical next step for machine
learning on real data
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final classification

But images have many limitations
« Cannot include tracking information

« Not adaptable for non-uniform detectors

e Can we use more physics-motivated inputs, not “pixels”?
5



Butter, Kasieczka, Plehn, MR °17

Beyond Images: LolLa

Why not use the jet constituent 4-vectors directly?
Two ingredients:

1. ColLa” - learns the jet clustering history

CoLa 7
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Performance of LolLa

First test: do we do better than images”?

* Using calorimeter information only, no N
: . C o otherOfTaggers |
. - DeepTop: LolLa
 Evidence that LolLa learns the same g
. o
features as image-based approach 9102
e Far less training time, fewer weights, fewer O
Inputs required 3‘3101 ~~~~~~~~~~~~
e Same performance for much less CPU time :
= suggests we should move away from
10°
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But how does LolLa improve physics performance”
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Ultra-boosted tops

Calorimeter resolution degrades for high pT tops

More likely that jet constituents will land on same cell, so loss of information

" Calo p, > 1300 GeV
. CaIQ-"BT_?-'f':‘--SO-G'é\l:“_""

Use much higher-resolution tracking

Same number of constituents at high pT so
no loss of info
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Quark-gluon tagging

Also well-suited to NN-based taggers (but more challenging)

Kasieczka, Kiefer, Plehn, MR (in progress)

« Discrimination based on splitting functions and ratio of Casimir operators CA/CF

 Broad phenomenological applications

e e.g. improving searches for invisible Higgs decays with monojets
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* Even with optimistic systematics, not yet competitive

* More optimisation to be done



Reference dataset

Have your own NN-based tagger you'd like to test”

Community sample available in compressed h5 or ROOT format

Details and instructions available as Google Doc at:

https://docs.google.com/document/d/1Hcuc6LBxZNX16zjEGeql6DAzspkDC4nDTyjMplbWHRo/edit

This is a living document, please update it with your own NN performance results!

Some results should be presented at BOOST next week, keep your eyes peeled!
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Conclusions

* Recent developments in machine learning have found novel and
exciting applications in top tagging

* Two approaches presented here: image-based and 4-vector based

e Both show excellent ability to identify hadronic top decays

| olLa approach has more physics-motivated inputs + simpler
network architecture + less CPU time

* Ability to include tracking and extend to very high pT

* Broad pheno applications, including BSM

e Time to start on real data”
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Backup: Deeplop analysis
Signal: all-hadronic ttbar, Background: QCD dijets

(PYTHIA8 + Delphes)

Clust orimeter t C-A AR=1.5
uster calorimeter towers or 350 GeV < pr.y < 450 GeV

particle-tlow objects into fat jets sl < 1.0

Sort jet constituents by pT, feed
four-vectors into NN

300k signal and background events

rain/test/validation split: 60/20/20
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Backup: preprocessing

Don't want to waste network parameters on learning special

relativity, pre-process to remove this dependence
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