/. 23RD INTERNATIONAL CONFERENCE ON o SRl
ational Palace of Gulture

GCOMPUTING IN HIGH ENERGY AND'NUGLEAR PHYSICS ~ Sofia, Bulgaria

CHEP 2018

STRATEGY FOR MULTITHREADING / VECTORIZATION

GERHARD RAVEN / VU AMSTERDAM & NIKHEF

/2 3RD INTERNATIONAL CONFERENCE ON 913 July 2018

GCOMPUTING IN HIGH ENERGY AND'NUGLEAR PHYSICS ~ Sofia, Bulgaria

CHEP 2018

STRATEGY FOR PARALLELISM

GERHARD RAVEN / VU AMSTERDAM & NIKHEF

CppCon 2015: Andrei Alexandrescu “Declarative Control Flow" o
cPRCON.®

Declarative Control Flow
Prepared for CppCon

Bellevue, WA, Sep 20-25, 2015

Andreil Alexandrescu, Ph.D.

andrei@erdani.com ANDREI ALEXANDRESCU

Declarative
Control Flow

I I

! | |
D 2015- Andrei Alexandrescu. Do not redistribute. 1 /41 WW W . C p p C on.or g

https://www.youtube.com/watch?v=WjTrfoiB0MQ
https://youtu.be/WjTrfoiB0MQ

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz

Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Time for a 64-bit

: Today’s computers now take
Multiply-Add

much longer to fetch or store
than to add and multiply.

Atanasoff-

1psec Cray TM

Cray 2
. . 138
Time for a 64-bit neec 130

Memory Fetch 100 nsec

O g 90 nsec
Lacly @ - t_’ ||| ®
entium

1940 1950 1960 1970 1980 1990 2000 2010
Year

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz

Typical Power
(Watts)

Number of
Logical Cores

1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Time for a 64-bit

: Today’s computers now take
Multiply-Add

much longer to fetch or store
than to add and multiply.

Atanasoff-

1psec Cray TM

Cray 2
. . 138
Time for a 64-bit neec 130

Memory Fetch
Y on ° 100 nsec 90 nsec
. .‘.

Pentium Il
o4 nsec29 nsec Xeon 5500

ILLIAC IV

1940 1950 1960 1970 1980 1990 2000 2010
Year

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz

Typical Power
(Watts)

Number of
Logical Cores

1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Time for a 64-bit

: Today’s computers now take
Multiply-Add

much longer to fetch or store
than to add and multiply.

Atanasoff-

1psec Cray TM

Cray 2
. . 138
Time for a 64-bit neec 130

Memory Fetch
Y on ° 100 nsec 90 nsec
. .‘.

Pentium Il
o4 nsec29 nsec Xeon 5500

ILLIAC IV

1940 1950 1960 1970 1980 1990 2000 2010
Year

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

42 Years of Microprocessor Trend Data

Transistors
(thousands)

Single-Thread
Performance 3
(SpecINT x 107)

Frequency (MHz

Typical Power
(Watts)

Number of
Logical Cores

1970 1980 1990 2000 2010 2020

Year

Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Time for a 64-bit

. Today's computers now take
Multiply-Add

much longer to fetch or store
than to add and multiply.

Atanasoff-

1psec Cray TM
13g Cray2

nsec 130

Y~ 100 nsec g9 psec
Lacly @ P——

Pentium Il
o4 nsec29 nsec Xeon 5500

Time for a 64-bit
Memory Fetch

1940 1950 1960 1970 1980 1990 2000 2010
Year

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

CHEP2018 — STRATEGY FOR PARALLELISM

THE PRBBtEM CHALLENGE

Great moments in evolution Find #ore @
NerdTests.com

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

CHEP2018 — STRATEGY FOR PARALLELISM

DESIGN PRINCIPLES: CONCEPTUAL INTEGRITY

» The design is coherent, reliable, and does what the user
expects it to do.

» Be consistent: Don't make similar things different,
including in spelling, behavior, or capability. Don’t make
different things appear similar when they have different

BNINIAIAINIENG IREYNLIADE N BAYERD

behavior or capability.

» Be orthogonal: Avoid arbitrary coupling. Let features be
used freely in combination.

MYTHICAL

: .. , I-. [
» Be general: Don't restrict what is inherent. Don't MAN-MONTH
arbitrarily restrict a complete set of uses. Avoid special FREDERICK P. BROOKS. JR.
cases and partial features.

Brooks 1975

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Mythical_Man-Month

CHEP2018 — STRATEGY FOR PARALLELISM

DESIGN GOAL

» “Be Minimal” — hard to abuse, easy to use right

VIR 100
{ l : ! LJ

CHEP2018 — STRATEGY FOR PARALLELISM

“I choose a block of marble and
chop off whatever | don't need.”

— Auguste Rodin

T COULD RESTRUCTURE
THE PROGRAMS FLOW

OR USE ONE LITILE
‘Goto' INSTEAD.

EH, SCREW GOOD PRACTICE.
HOW BADCAN T BE?

\ goto main-sub3;

/j’

* COMPILE*

WHY DO YOU LIKE FUNCTIONAL
PROGRAMMING S0 MUCH? WHAT
DOES IT ACTUALLY GET YOU?

TAIL RECURSION 1S
IT5 OWN REWARD.

CODE WRITTEN IN HASKELL
15 GUARANTEED TO HAVE
NO SIDE EFFECTS.

|

... BECAUSE NO ONE
WILL EVER RUN IT?

https://doi.org/10.1145/362929.362947
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://wiki.haskell.org/Referential_transparency

-y - VLG A Yl
- . o8 5 :
9 % “ iy LR ~ (’
. AN) \
5 » e Y -«J2 "
) AN H
’ =AML g !
v . Ay - &
sl o ’ e d .
. .. ’
y s r "
s
5 \
A
.
y
-
» -
- -

~ Improving on current interfaces

-.’,-’u's'- _: A ’
7 SN TN Bl
> T, 4
L o S - 4 ‘lf“
7= G YRR o L
\Al 1 . o
» " 1 ¥ . . DR L 2 X ¢ !

TTreeReader data(tree);
TTreeReaderValue<A> x(data, "x"

TTreeReaderValue y(data, "y"); ROOT: :EnableImplicitMT();
TTreeReaderValue<C> z(data, "z"); TDataFrame data(tree, {"x","y","z"});

while (reader.Next()) {

if (IsGoodEvent(x, y, z)) data.Filter(IsGoodEvent)
DoStuff(x, y, z); .Foreach(DoStuff);

users have full control over the event-loop
needs some boilerplate

®

v

v running the event-loop in parallel is not trivial

v’ users implement trivial operations again and again

https://indico.cern.ch/event/587955/contributions/2937525/
https://indico.cern.ch/event/587955/contributions/2937534
https://indico.cern.ch/event/587955/contributions/2952520/
https://indico.cern.ch/event/616784/contributions/2489572/attachments/1420562/2176746/TDataFrame.pdf
https://indico.cern.ch/event/616784/

CHEP2018 — STRATEGY FOR PARALLELISM

10

COMPOSING COMPONENTS — PIPELINES & GRAPHS
2018

C++ now MAY 7-11

Cppnow.org

"WHOLEMEAL PROGRAMMING"

Declarative style is about processing data pipelines.
When you have composable pieces, rearranging and exploring data is quick and easy.

Compare: unix command-line.

e generators (find, iota)
e selections (grep, unique)

Ben Deane e transformations (cut, tr, transform)
]
=3

permutations (sort, shuffle)

Easy to Use, reductions/unfolds (wc, xargs, accumulate)
Hard to Misuse

Declarative Style in C+ +

82/122
A

https://youtu.be/2ouxETt75R4?t=56m3s

Algorithm & Transient Store

Data T1

Data T1

Algorithm
)

Transient Event

et Store | omuvs] AIGeTth

Apparent dataflow
Data TH _

Real dataflow
_

LHCb software tutorial - September 2011

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

CHEP2018 — STRATEGY FOR PARALLELISM

12

DECLARATIVE COMPONENTS

» Make the input/output part of the
component interface signature

» Example of a ‘'minmal, generic’
interface

https://gitlab.cern.ch/lhcb/Gaudi/blob/master/GaudiAlg/GaudiAlg/Transformer.h
https://herbsutter.com/2013/01/01/video-you-dont-know-const-and-mutable/

CHEP2018 — STRATEGY FOR PARALLELISM

12

DECLARATIVE COMPONENTS

» Make the input/output part of the
component interface signature

» Example of a ‘'minmal, generic’
interface

» Today, uses an "event data store” —
but the user code doesn’t know/care!

» No “user changes” if the ‘data
store’ is replaced with eg,.
‘'message queue’ (0MQ, MPI, ...)

» modulo small print on (expectations about) lifetime of
the input (in case the output wants to reference back

to the input!) — but that can be clarified by tweaking
the input types

Example: Gaudi::Functional::Transformer

template <typename Out, typename... In>
class Transformer<Out(In const&..)>

{
virtual Out operator()(In const&...) const = 0;

s

declarative: states what it requires as input, produces as output

N\

class ElectronFinder : Transformer<Electrons(Tracks const&, Clusters const&)>

1

Electrons operator()(Tracks const&, Clusters const&) const override

¥

const: makes it hard(er) to write code which misbehaves in a
multithreaded environment!
Check Herb Sutter's presentation for much more information

https://gitlab.cern.ch/lhcb/Gaudi/blob/master/GaudiAlg/GaudiAlg/Transformer.h
https://herbsutter.com/2013/01/01/video-you-dont-know-const-and-mutable/

O'REILLY"

PARADIGM OVER SYNTAX

Neal Ford

http://nealford.com/books/functionalthinking.html

Gooale “Clean Code" talks

CHEP2018 — STRATEGY FOR PARALLELISM 14

WHAT ABOUT THE EVENT DATA?

Shared Not Shared

'\Q‘ nttps / /docs . google.com/ mdociDeadzgh2mang_174gcphdcghdfs « truelrevision« _Latest&start « 0&theme « Dlank&cw) «tr

Global State

Mutable ~

Insanity

noun

repeating the same thing and
expecting a different result.

Immutable \VAVAY/ \VAVAY/

b). 1:01./.54:08 cc

» Parallel processing + shared mutable data = race conditions + non-determinism

https://youtu.be/-FRm3VPhseI?t=1m1s
https://www.youtube.com/watch?v=-FRm3VPhseI

CHEP2018 — STRATEGY FOR PARALLELISM

IMMUTABLE DATA — ONCE SHARED

» Avoid large ‘objects’ which need to be modified

» Instead, compose smaller pieces, which
individually are immutable

» Think ‘zip’ (python) or ‘join’ (SQL) — using thin
proxies, which are transparant to the
compiler, and give the illusion of objects
containing just what is needed, nothing more

» Admittedly, some things become more difficult
(eg. bi-directional links)

CHEP2018 — STRATEGY FOR PARALLELISM

16

LIFTING: ABSTRACTING “OUTER LOOP PARALLELISM™

» “Lifting is a concept which allows you to
transform a function into a corresponding
function within another (more general) setting”

» User provides ‘Scalar1— Scaler2’, Framework
uses CRTP to “lift" it to a "Vector<Scalar1> —

Vector<Scalar2>" transformer
» this is python’'s map

» Could use std::transform, TBB, libDispatch,
std::async (don't!), Parallel STL, ... to dispatch
the work — and decide eg. on ‘chunk size'

» note: as the output needs to be ‘gathered’, anything but
std::transform only useful if ‘lot of work’ compared to the

gathering overhead

struct

: ScalarTransformeF<FromPrTrack,
Vector<Track>(Vector<PrTrack> const&)>

using ScalarTransformer: :operator();
Track operator()(PrTrack const&) const;

¥,

not virtual, will be inlined!

» Future work:
» recognize vectorized implementation(s), use when appropriate
» ‘zip': Vector<l1>,Vector<I2> — vector<O> from user provided /1,I12 = O

» other python-eque lifting operations: ‘product’ , ‘permutations’,
‘combinations’

https://wiki.haskell.org/Lifting
https://wiki.haskell.org/Lifting
https://wiki.haskell.org/Lifting
https://docs.python.org/3/library/functions.html#map
https://gitlab.cern.ch/lhcb/Rec/blob/master/Pr/PrConverters/src/fromPrVeloUTTrack.cpp
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
https://docs.python.org/3/library/itertools.html#itertools.product
https://docs.python.org/3/library/itertools.html#itertools.permutations
https://docs.python.org/3/library/itertools.html#itertools.combinations

CHEP2018 — STRATEGY FOR PARALLELISM

17

VECTORIZATION — WHERE PERFORMANCE HIDES

» Why does the lifting / elimination of explicit

loops matter?

» Please take a look at this video or these

slides

» It matches the several C++ vectorization
libraries, eqg. V¢, Boost::SIMD, ...

» And the C++ Parallelism 2 Technical
Specification

» Be Consistent!

// parallel and vectorized execution

std: :vector<float> v = { ... };

parallel::for each(
parallel::datapar execution,

std: :begin(v), std::end(v),
[] (auto& d) {
where(d<0, d) = 42.0;

}):

Note the use of a generic lambda

The actual argument type can be a native vector type,
or scalar for the stragglers

https://youtu.be/W2tWOdzgXHA
http://sean-parent.stlab.cc/presentations/2013-09-11-cpp-seasoning/cpp-seasoning.pdf
http://sean-parent.stlab.cc/presentations/2013-09-11-cpp-seasoning/cpp-seasoning.pdf
https://github.com/VcDevel/Vc
https://github.com/NumScale/boost.simd
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf

CHEP2018 — STRATEGY FOR PARALLELISM

DATA LAYOUT & VECTORIZATION

» Scalable ‘vertical’ vectorization depends on regular,
predictable data layout & memory access

» Inheritance makes this impossible

» Size of objects varies, forcing heap allocation,
virtual functions make inlining difficult

» Thin ‘proxies’ (which the compiler should be able to
eliminate) can still give the illusion of ‘complex objects’

» see eg. here

» and provides freedom to optimize the underlying
storage to the target hardware (‘AOS’ vs. ‘'SOA' vs
'‘AOSOA' vs ...)

https://twiki.cern.ch/twiki/bin/view/LCG/VIOODvsDOD

CHEP2018 — STRATEGY FOR PARALLELISM

19

EXECUTING COMPONENTS

"Ensure that the average number of runnable threads is not significantly greater than the number
of processors."

"Use Lots of Processes! This is important—we have to keep the CPUs busy. All the CPUs must
be busy all the time. The easiest way to achieve this is to have lots of processes. VWhen | say
lots of processes, | mean lots in relation to the number of CPUs. If we have lots of processes,
then we won't need to worry about keeping the CPUs busy”

» Erlang process is extremely light-weight: “Erlang is a concurrent programming language -
parallelism is provided by Erlang and not the host operating system”

» C++: Task systems on top of thread pools (Intel TBB, HPX, MS PPL, Apple GCD, ...)

» Lots of tasks, on top of a pool of threads matching ~ hardware threads

http://erlang.org/doc/reference_manual/processes.html
https://www.threadingbuildingblocks.org
http://stellar.cct.lsu.edu/projects/hpx/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://apple.github.io/swift-corelibs-libdispatch/

“PEOPLE SHOULD BE ASSIGNED TASKS, AND
THEN TREY SHOULD BE EXECUTED"

CHEP2018 — STRATEGY FOR PARALLELISM

DOMINO DAY

mm‘a"a‘a“a‘unmimim... .

tg i P 00"-.’

https://en.wikipedia.org/wiki/Domino_Day
https://www.youtube.com/watch?v=z7OzuXZ6U7s

CHEP2018 — STRATEGY FOR PARALLELISM

DOMINO DAY

mm‘a"a‘a“a‘unmimim... .

tg i P 00"-.’

https://en.wikipedia.org/wiki/Domino_Day
https://www.youtube.com/watch?v=z7OzuXZ6U7s

CHEP2018 — STRATEGY FOR PARALLELISM

22

CONTROL FLOW AND DATA FLOW — NOT JUST FOR PARALLELISM!

» Control flow is what ‘users’ want to configure

» Data flow is a ‘'nuisance parameter’ that
should be implicit & automatically resolved

» Using a declarative configuration

» Scheduler infrastructure can help simplify job
configuration

» Avoid configuring more than strictly
necessary

» Verification of the validity

CHEP2018 — STRATEGY FOR PARALLELISM

23

ASIDE — MIGRATIONS

» Migrate code to different paradigms / better
abstractions is (very) expensive (short term

» it takes effort & time
» But very worthwhile (long term
» it simplifies the ‘user code’
» easier to understand, improve, maintain
» it simplifies/liberates the framework code!

» easier to understand, improve, maintain

https://www.merriam-webster.com/dictionary/reimagine
https://en.wikipedia.org/wiki/Makeover
http://ithare.com/multi-coring-and-non-blocking-instead-of-multi-threading-with-a-script/

CHEP2018 — STRATEGY FOR PARALLELISM

25

TALK::~TALK()

