
GERHARD RAVEN / VU AMSTERDAM & NIKHEF

STRATEGY FOR MULTITHREADING / VECTORIZATION

GERHARD RAVEN / VU AMSTERDAM & NIKHEF

STRATEGY FOR PARALLELISM

CHEP2018 — STRATEGY FOR PARALLELISM

▸ Andrei Alexandrescu — “Declarative Control Flow”

▸ Great responsibility! — if I successfully plant the wrong idea here today, it may
have great impact on the future of HEP…

�2

https://www.youtube.com/watch?v=WjTrfoiB0MQ
https://youtu.be/WjTrfoiB0MQ

CHEP2018 — STRATEGY FOR PARALLELISM

WHAT IS THE PROBLEM CHALLENGE

▸ Single-thread performance increase has
stalled a decade ago…

▸ CPU / memory gap growing

In the mean time:

▸ Core count grows

▸ Vectorization is back! (did it ever go away?)

▸ Accelerators is where the growth is…

�3

Memory Latency

VI S&C challenges in EHEP 7

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png

CHEP2018 — STRATEGY FOR PARALLELISM

THE PROBLEM CHALLENGE

�4

Memory Latency

VI S&C challenges in EHEP 7

Taking advantage of new architectures
and programming paradigms will be
critical for HEP to increase the ability of
our code to deliver physics results
efficiently, and to meet the processing
challenges of the future. 

(A Roadmap for HEP Software and Computing
R&D for the 2020s. arXiv:1712.06982

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

CHEP2018 — STRATEGY FOR PARALLELISM

THE PROBLEM CHALLENGE

�4

Memory Latency

VI S&C challenges in EHEP 7

Taking advantage of new architectures
and programming paradigms will be
critical for HEP to increase the ability of
our code to deliver physics results
efficiently, and to meet the processing
challenges of the future. 

(A Roadmap for HEP Software and Computing
R&D for the 2020s. arXiv:1712.06982

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

CHEP2018 — STRATEGY FOR PARALLELISM

THE PROBLEM CHALLENGE

�4

Memory Latency

VI S&C challenges in EHEP 7

Taking advantage of new architectures
and programming paradigms will be
critical for HEP to increase the ability of
our code to deliver physics results
efficiently, and to meet the processing
challenges of the future. 

(A Roadmap for HEP Software and Computing
R&D for the 2020s. arXiv:1712.06982

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

CHEP2018 — STRATEGY FOR PARALLELISM

THE PROBLEM CHALLENGE

�4

Memory Latency

VI S&C challenges in EHEP 7

Taking advantage of new architectures
and programming paradigms will be
critical for HEP to increase the ability of
our code to deliver physics results
efficiently, and to meet the processing
challenges of the future. 

(A Roadmap for HEP Software and Computing
R&D for the 2020s. arXiv:1712.06982

https://www.karlrupp.net/wp-content/uploads/2018/02/42-years-processor-trend.png
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982
https://arxiv.org/abs/1712.06982

CHEP2018 — STRATEGY FOR PARALLELISM

DESIGN PRINCIPLES: CONCEPTUAL INTEGRITY
‣ The design is coherent, reliable, and does what the user

expects it to do.

‣ Be consistent: Don’t make similar things different,
including in spelling, behavior, or capability. Don’t make
different things appear similar when they have different
behavior or capability.

‣ Be orthogonal: Avoid arbitrary coupling. Let features be
used freely in combination.

‣ Be general: Don’t restrict what is inherent. Don’t
arbitrarily restrict a complete set of uses. Avoid special
cases and partial features. 

�5

 Brooks 1975

https://en.wikipedia.org/wiki/The_Mythical_Man-Month
https://en.wikipedia.org/wiki/The_Mythical_Man-Month

CHEP2018 — STRATEGY FOR PARALLELISM

DESIGN GOAL
▸ “Be Minimal” — hard to abuse, easy to use right

�6

CHEP2018 — STRATEGY FOR PARALLELISM

DESIGN GOAL
▸ “Be Minimal” — hard to abuse, easy to use right

�6

CHEP2018 — STRATEGY FOR PARALLELISM

DESIGN GOAL
▸ “Be Minimal” — hard to abuse, easy to use right

�6

CHEP2018 — STRATEGY FOR PARALLELISM

“I choose a block of marble and
chop off whatever I don't need.”

— Auguste Rodin

�7

CHEP2018 — STRATEGY FOR PARALLELISM

HOW: TAKING AWAY PRIMITIVES — INTRODUCE ABSTRACTIONS
▸ Structured programming — Dijkstra: GOTO considered harmful

▸ use loop constructs (for, while) instead

▸ Procedural programming — modularization

▸ (local) scope

▸ Object-Oriented programming — dependency inversion

▸ takes away ‘void *’, use VTBL instead — allows to call lower-level code ‘not yet written’

▸ hide state

▸ Functional programming — takes away (mutable) state

▸ powerful type systems, referential transparency

▸ Declarative programming — takes away control flow

�8

https://doi.org/10.1145/362929.362947
https://en.wikipedia.org/wiki/Dependency_inversion_principle
https://wiki.haskell.org/Referential_transparency

VISION 25

DECLARATIVE INTERFACES & COMPOSITION
▸ Separate “what” from “how” &

“when”

▸ Allows the underlying
implementations to evolve /
adapt

▸ eg. ‘transpose’ traversal,
enabling vectorization

▸ Gets rid of ‘boilerplate’

▸ Enables composition

▸ see eg. talks by Jim Pivarski,
Enrico Gireaud, Gordon Watts

�9

5

ROOT::EnableImplicitMT();
TDataFrame data(tree, {"x","y","z"});

data.Filter(IsGoodEvent)
 .Foreach(DoStuff);

● users have full control over the event-loop
● needs some boilerplate
● running the event-loop in parallel is not trivial
● users implement trivial operations again and again

TTreeReader data(tree);
TTreeReaderValue<A> x(data, "x");
TTreeReaderValue y(data, "y");
TTreeReaderValue<C> z(data, "z");

while (reader.Next()) {
 if (IsGoodEvent(x, y, z))
 DoStuff(x, y, z);
}

Improving on current interfaces

✔
✔
✔

E. Gireaud & D. Piparo, ROOT interface discussion 1/3/2017

https://indico.cern.ch/event/587955/contributions/2937525/
https://indico.cern.ch/event/587955/contributions/2937534
https://indico.cern.ch/event/587955/contributions/2952520/
https://indico.cern.ch/event/616784/contributions/2489572/attachments/1420562/2176746/TDataFrame.pdf
https://indico.cern.ch/event/616784/

CHEP2018 — STRATEGY FOR PARALLELISM

COMPOSING COMPONENTS → PIPELINES & GRAPHS

�10

https://youtu.be/2ouxETt75R4?t=56m3s

CHEP2018 — STRATEGY FOR PARALLELISM

COMPONENT INTERFACES AND FRAMEWORK ABSTRACTIONS…
▸ User code should not care how to obtain its data

▸ If the user code does not have specify how, the
‘back-end’ can be changed without changing the
‘business code’

▸ Avoids ‘magic incantations’ which need to be
documented / taught / enforced / updated

▸ what if multiple events ‘in-flight’? — must talk to
the relevant data store

▸ what if the data store is replaced by a messaging
system?
▸ note: must pay attention to the assumed lifetime of the input — but that is what ‘const&’ and ‘&&’ are for…

▸ Distinguish between plumbing and porcelain

�11

https://git-scm.com/book/en/v2/Git-Internals-Plumbing-and-Porcelain

CHEP2018 — STRATEGY FOR PARALLELISM

DECLARATIVE COMPONENTS
▸ Make the input/output part of the

component interface signature

▸ Example of a ‘minmal, generic’
interface

▸ Today, uses an “event data store” —
but the user code doesn’t know/care!

▸ No “user changes” if the ‘data
store’ is replaced with eg.
‘message queue’ (0MQ, MPI, …)

▸ modulo small print on (expectations about) lifetime of
the input (in case the output wants to reference back
to the input!) — but that can be clarified by tweaking
the input types

�12

template <typename Out, typename... In>
class Transformer<Out(In const&…)>
{
 virtual Out operator()(In const&...) const = 0;
};

In1… InN

…

Out

class ElectronFinder : Transformer<Electrons(Tracks const&, Clusters const&)>
{
 Electrons operator()(Tracks const&, Clusters const&) const override
};

declarative: states what it requires as input, produces as output

const: makes it hard(er) to write code which misbehaves in a
multithreaded environment!
Check Herb Sutter's presentation for much more information

Example: Gaudi::Functional::Transformer

https://gitlab.cern.ch/lhcb/Gaudi/blob/master/GaudiAlg/GaudiAlg/Transformer.h
https://herbsutter.com/2013/01/01/video-you-dont-know-const-and-mutable/

CHEP2018 — STRATEGY FOR PARALLELISM

DECLARATIVE COMPONENTS
▸ Make the input/output part of the

component interface signature

▸ Example of a ‘minmal, generic’
interface

▸ Today, uses an “event data store” —
but the user code doesn’t know/care!

▸ No “user changes” if the ‘data
store’ is replaced with eg.
‘message queue’ (0MQ, MPI, …)

▸ modulo small print on (expectations about) lifetime of
the input (in case the output wants to reference back
to the input!) — but that can be clarified by tweaking
the input types

�12

template <typename Out, typename... In>
class Transformer<Out(In const&…)>
{
 virtual Out operator()(In const&...) const = 0;
};

In1… InN

…

Out

class ElectronFinder : Transformer<Electrons(Tracks const&, Clusters const&)>
{
 Electrons operator()(Tracks const&, Clusters const&) const override
};

declarative: states what it requires as input, produces as output

const: makes it hard(er) to write code which misbehaves in a
multithreaded environment!
Check Herb Sutter's presentation for much more information

Example: Gaudi::Functional::Transformer

https://gitlab.cern.ch/lhcb/Gaudi/blob/master/GaudiAlg/GaudiAlg/Transformer.h
https://herbsutter.com/2013/01/01/video-you-dont-know-const-and-mutable/

CHEP2018 — STRATEGY FOR PARALLELISM

IMMUTABLE COMPONENTS
▸ Once initialized, components should be

immutable

▸ Small print: state of counters/histograms does not affect processing —- so does not
matter

▸ Easier to understand & test

▸ Re-entrant — which is necessary for scaling on
massive parallel systems

▸ All ‘varying state’ explicitly passed as arguments

▸ A must for offloading to an accelerator

�13

http://nealford.com/books/functionalthinking.html

CHEP2018 — STRATEGY FOR PARALLELISM

WHAT ABOUT THE EVENT DATA?

�14

Shared Not Shared

Mutable XXX ~

Immutable VVV VVV

‣ Parallel processing + shared mutable data → race conditions + non-determinism

G
oo

gl
e

“C
le

an
 C

od
e”

 ta
lk

s

https://youtu.be/-FRm3VPhseI?t=1m1s
https://www.youtube.com/watch?v=-FRm3VPhseI

CHEP2018 — STRATEGY FOR PARALLELISM

IMMUTABLE DATA — ONCE SHARED

▸ Avoid large ‘objects’ which need to be modified

▸ Instead, compose smaller pieces, which
individually are immutable

▸ Think ‘zip’ (python) or ‘join’ (SQL) — using thin
proxies, which are transparant to the
compiler, and give the illusion of objects
containing just what is needed, nothing more

▸ Admittedly, some things become more difficult
(eg. bi-directional links)

�15

CHEP2018 — STRATEGY FOR PARALLELISM

LIFTING: ABSTRACTING “OUTER LOOP PARALLELISM”
▸ “Lifting is a concept which allows you to

transform a function into a corresponding
function within another (more general) setting”

▸ User provides `Scalar1➞ Scaler2`, Framework
uses CRTP to “lift” it to a `Vector<Scalar1> ➞
Vector<Scalar2>` transformer

▸ this is python’s map

▸ Could use std::transform, TBB, libDispatch,
std::async (don’t!), Parallel STL, … to dispatch
the work — and decide eg. on ‘chunk size’

▸ note: as the output needs to be ‘gathered’, anything but
std::transform only useful if ‘lot of work’ compared to the
gathering overhead

�16

 struct FromPrTrack_
 : ScalarTransformer<FromPrTrack,
 Vector<Track>(Vector<PrTrack> const&)>
 {
 using ScalarTransformer::operator();
 Track operator()(PrTrack const&) const;
 };

not virtual, will be inlined!

CRTP

▸ Future work:
▸ recognize vectorized implementation(s), use when appropriate
▸ ‘zip’ : Vector<I1>,Vector<I2> ➞ vector<O> from user provided I1,I2 ➞ O
▸ other python-eque lifting operations: ‘product’ , ‘permutations’,

‘combinations’

https://wiki.haskell.org/Lifting
https://wiki.haskell.org/Lifting
https://wiki.haskell.org/Lifting
https://docs.python.org/3/library/functions.html#map
https://gitlab.cern.ch/lhcb/Rec/blob/master/Pr/PrConverters/src/fromPrVeloUTTrack.cpp
https://en.wikipedia.org/wiki/Curiously_recurring_template_pattern
https://docs.python.org/3/library/itertools.html#itertools.product
https://docs.python.org/3/library/itertools.html#itertools.permutations
https://docs.python.org/3/library/itertools.html#itertools.combinations

CHEP2018 — STRATEGY FOR PARALLELISM

VECTORIZATION — WHERE PERFORMANCE HIDES

▸ Why does the lifting / elimination of explicit
loops matter?

▸ Please take a look at this video or these
slides

▸ It matches the several C++ vectorization
libraries, eg. Vc, Boost::SIMD, …

▸ And the C++ Parallelism 2 Technical
Specification

▸ Be Consistent!

�17

 // parallel and vectorized execution
 std::vector<float> v = { ... };
 parallel::for_each(
 parallel::datapar_execution,
 std::begin(v), std::end(v),
 [](auto& d) {
 where(d<0, d) = 42.0;
 });

Note the use of a generic lambda

The actual argument type can be a native vector type ,
or scalar for the stragglers

https://youtu.be/W2tWOdzgXHA
http://sean-parent.stlab.cc/presentations/2013-09-11-cpp-seasoning/cpp-seasoning.pdf
http://sean-parent.stlab.cc/presentations/2013-09-11-cpp-seasoning/cpp-seasoning.pdf
https://github.com/VcDevel/Vc
https://github.com/NumScale/boost.simd
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2018/p0214r9.pdf

CHEP2018 — STRATEGY FOR PARALLELISM

DATA LAYOUT & VECTORIZATION
▸ Scalable ‘vertical’ vectorization depends on regular,

predictable data layout & memory access

▸ Inheritance makes this impossible

▸ Size of objects varies, forcing heap allocation,
virtual functions make inlining difficult

▸ Thin ‘proxies’ (which the compiler should be able to
eliminate) can still give the illusion of ‘complex objects’

▸ see eg. here

▸ and provides freedom to optimize the underlying
storage to the target hardware (‘AOS’ vs. ‘SOA’ vs
‘AOSOA’ vs …)

�18

https://twiki.cern.ch/twiki/bin/view/LCG/VIOODvsDOD

CHEP2018 — STRATEGY FOR PARALLELISM

EXECUTING COMPONENTS

▸ Erlang process is extremely light-weight: “Erlang is a concurrent programming language –
parallelism is provided by Erlang and not the host operating system”

▸ C++: Task systems on top of thread pools (Intel TBB, HPX, MS PPL, Apple GCD, …)

▸ Lots of tasks, on top of a pool of threads matching ~ hardware threads

�19

"Ensure that the average number of runnable threads is not significantly greater than the number
of processors."

“Use Lots of Processes! This is important—we have to keep the CPUs busy. All the CPUs must
be busy all the time. The easiest way to achieve this is to have lots of processes. VVhen I say
lots of processes, I mean lots in relation to the number of CPUs. If we have lots of processes,
then we won't need to worry about keeping the CPUs busy”

http://erlang.org/doc/reference_manual/processes.html
https://www.threadingbuildingblocks.org
http://stellar.cct.lsu.edu/projects/hpx/
https://msdn.microsoft.com/en-us/library/dd492418.aspx
https://apple.github.io/swift-corelibs-libdispatch/

CHEP2018 — STRATEGY FOR PARALLELISM

“PEOPLE SHOULD BE ASSIGNED TASKS, AND
THEN THEY SHOULD BE EXECUTED”

 a senior dutch physicist in a software
meeting at CERN in the early 90-ies

�20

CHEP2018 — STRATEGY FOR PARALLELISM

DOMINO DAY

�21

https://en.wikipedia.org/wiki/Domino_Day
https://www.youtube.com/watch?v=z7OzuXZ6U7s

CHEP2018 — STRATEGY FOR PARALLELISM

DOMINO DAY

�21

https://en.wikipedia.org/wiki/Domino_Day
https://www.youtube.com/watch?v=z7OzuXZ6U7s

CHEP2018 — STRATEGY FOR PARALLELISM

CONTROL FLOW AND DATA FLOW — NOT JUST FOR PARALLELISM!

▸ Control flow is what ‘users’ want to configure

▸ Data flow is a ‘nuisance parameter’ that
should be implicit & automatically resolved

▸ Using a declarative configuration

▸ Scheduler infrastructure can help simplify job
configuration

▸ Avoid configuring more than strictly
necessary

▸ Verification of the validity

�22

CHEP2018 — STRATEGY FOR PARALLELISM

ASIDE — MIGRATIONS

▸ Migrate code to different paradigms / better
abstractions is (very) expensive (short term)

▸ it takes effort & time

▸ But very worthwhile (long term)

▸ it simplifies the ‘user code’

▸ easier to understand, improve, maintain

▸ it simplifies/liberates the framework code!

▸ easier to understand, improve, maintain

�23

CHEP2018 — STRATEGY FOR PARALLELISM

SUMMARY / CONCLUSIONS

▸ Learn lessons from the past — and move forwards

▸ Parallelism is hard, but necessary given the
hardware landscape

▸ To do parallelism really right, requires re-imaging
— not just a make-over

▸ Strive for minimal abstractions which allow &
enable future evolution

▸ Data layout and access is key to performance

▸ avoid inheritance in data, favor composition,
immutable shared data

�24

https://www.merriam-webster.com/dictionary/reimagine
https://en.wikipedia.org/wiki/Makeover
http://ithare.com/multi-coring-and-non-blocking-instead-of-multi-threading-with-a-script/

CHEP2018 — STRATEGY FOR PARALLELISM

TALK::~TALK()

�25

