

HSF Community White Paper: Lessons and Future Work

Michel Jouvin - CNRS/LAL

CHEP 2018, Sofia 2018-07-11

HEP: Landscape and Frontiers

LBNF/PIP I

SANFORD

Summer shutd

CMS Offline Software http://cms-sw.github.io/ hep cern cms-experiment c-plus-plus @ 186,380 commits

♦ Code () Issues 311 () Pull requests 117 (III Projects 0 (III Wiki III Insights

№ 95 branches

Cms-sw / cmssw

athena v

ATLAS Experiment main repository for Athena code

41 684 contributors

SuperKEKB luminosity projection

Slots of Running Jobs

Goal of Belle II/SuperKEKB

ATLAS

♦ 3,954 releases

>50M LOC

					LBNF	LBNF	L	BNF / PIP II			
				DUNE	DUNE	DUNE	DUNE	DUNE	DU	NE	
		_		_							
lown		Construction / commissioning							Run		
FNAL Intensity Frontier											
	FINA	\∟ inte	HSILY I	er							

LONG-RANGE PLAN: DRAFT Version 7a

Fermilab Program Planning

20-Feb-17

Software Challenges for HL-LHC

- Pile-up of ~200 ⇒ particularly a challenge for charged particle reconstruction (40x compute resources)
- With a flat budget, Moore's lawish improvements (x10) are the real maximum we can expect on the HW side

- HEP software typically executes one instruction at a time (per thread)
 - Since ~2013 CPU (core) performance increase is due to more internal parallelism
 - o x10 probably achievable with the same HW if using the full potential of processors
 - major SW re-engineering required (but rewriting everything is not an option)
 - Accelerators like GPUs are of little use until the problem has been solved
- Increased amount of data requires to revise/evolve our computing and data management approaches
 - We must be able to feed our applications with data efficiently
- HL-LHC salvation will come from software improvements, not from hardware

High Luminosity LHC

 Large rise in rate (~10kHz) and complexity (mu~200): Run 2 SW & computing will not scale

HEP Software Foundation (HSF)

- The LHC experiments, Belle II and DUNE face the same challenges
 - HEP software must evolve to meet these challenges
 - Need to exploit all the expertise available, inside and outside our community, for parallelisation
 - New approaches needed to overcome limitations in today's code
- Cannot afford any more duplicated efforts
 - Each experiment has its own solution for almost everything (framework, reconstruction algorithms, ...)
- HSF established in 2015 to facilitate coordination and common efforts in software and computing across HEP in general
 - Our philosophy is bottom up, a.k.a. *do-ocracy*
- HSF already started with a number of workshops and working groups on common topics (packaging, licensing, analysis)

CWP: Making a Roadmap for the Future

- Community White Paper objective: describe a global vision for SW and computing in HEP in the 2020s (aka HL-LHC era)
 - Focus: achieve improvements in SW efficiency, enable new approaches for an extended physics reach, long term sustainability of our SW
 - Shared community view: bottom-up process built upon several general and topical workshops
 - Kick-off in San Diego, Jan. 2017; closing workshop in Annecy, June 2017
 - Official charge from WLCG in July 2016: CWP as an input to the HL-LHC "software upgrade"
 - Editorial work done during Fall 2017
- Significant community involvement in the CWP process and writing
 - ~100 participants to workshops, ~250 in the writing of the topical papers
 - o 2 public drafts of the global roadmap: 100s of commenters
 - Final release on Dec. 20, 2017 (<u>arXiv: 1712.06982</u>)
 - Publication in progress in Computing and SW for Big Science journal

A Roadmap for HEP Software and Computing R&D for the 2020s

HSF-CWP-2017-01 December 15, 2017

/()	page	do	cum	ent

- 13 topical sections summarising R&D in a variety of technical areas for HEP Software and Computing
 - Almost all major domains of HEP Software and Computing are covered
 - For each section, a topical paper with more details also (being) published in arXiv (e.g. 50-page detailed review about Detector Simulation)
- 1 section on Training and Careers
- **310 authors** (signers) from 124 HEP-related institutions
- More details on the HSF <u>web site</u>

1	Introduction					
2	2 Software and Computing Challenges					
3	Programme of Work					
	3.1 Physics Generators	11				
	3.2 Detector Simulation	15				
	3.3 Software Trigger and Event Reconstruction	23				
	3.4 Data Analysis and Interpretation	27				
	3.5 Machine Learning	31				
	3.6 Data Organisation, Management and Access	36				
	3.7 Facilities and Distributed Computing	41				
	3.8 Data-Flow Processing Framework	44				
	3.9 Conditions Data	47				
	3.10 Visualisation	50				
	3.11 Software Development, Deployment, Validation and Verification	53				
	3.12 Data and Software Preservation	57				
	3.13 Security	60				
4	Training and Careers	65				
	4.1 Training Challenges	65				
	4.2 Possible Directions for Training	66				
	4.3 Career Support and Recognition	68				
5	Conclusions	68				
A	ppendix A List of Workshops	71				
A	Appendix B Glossary					
\mathbf{R}	References					

Guiding Strategy for the Roadmap

- HEP faced many computing challenges before other communities and has developed over the decades a lot of community-specific solutions
 - Mainly for good reasons!
 - Several HEP-tools adopted by some other communities, e.g. GEANT4 and ROOT, and WLCG itself is a model/driver for large-scale computing adopted by some other disciplines
- But the world changed: other scientific communities and industry facing some similar challenges and HEP must be able to benefit from them
 - Machine learning, distributed analysis, distributed infrastructure
- Does not mean that we have drop-in replacements for our solutions
 - Challenge: find the proper integration between our community tools and the available technologies outside, maintain the necessary backward compatibility/continuity and long-term sustainability
 - As illustrated in CWP chapters, not one single approach for every topic: several paths for moving in this direction are part of the roadmap

Physics Event Generators

- Physics event generation starts our simulation chain to enable comparisons with detector events
 - Depending on the precision requested, CPU for event generation ranges from modest to huge
 - At Next-to-Leading Order (NLO) precision used today, CPU consumption can become important
 - Study of rare processes at the HL-LHC will require the more demanding NNLO for more analyses
- Generators are written by the theory community
 - Need expert help and long term associations to achieve code optimisation
 - Even basic multi-thread safety is problematic for many older, but still heavily used, generators
 - o Ongoing maintenance of tools like HepMC, LHAPDF, Rivet is required and needs rewarded
- Writing this section was the result of intense contacts between HEP experts
 and the main people in the generator community

R&D Outlook: dedicated <u>re-engineering workshop</u> planned Fall 2018

Detector Simulation

- Simulating our detectors consumes huge resources today
 - Remains a vital area for HL-LHC and intensity frontier experiments in particular

Main R&D topics

- Improved physics models for higher precision at higher energies (HL-LHC and then FCC)
- Adapting to new computing architectures
 - Can a vectorised transport engine actually work in a realistic prototype (GeantV early releases)? How painful would evolution be (re-integration into Geant4)?
- Faster simulation develop a common toolkit for tuning and validation of fast simulation
 - How can we best use Machine Learning profitably here? Multi-level approach, from processes to entire events
- Geometry modelling
 - Easier modelling of complex detectors, targeting new computing architectures
- **CWP brought a more consistent view and workplan** between the different projects

R&D Outlook: Community is well organised and actively pursuing many lines

Machine learning simulated calorimite

Software Trigger and Event Reconstruction

- Move to software triggers is already a key
 part of the program for LHCb and ALICE already in Run 3
 - 'Real time analysis' increases signal rates and can make computing more efficient (storage and CPU)

Main R&D topics

- Controlling charged particle tracking resource consumption and maintaining performance
 - Do current algorithms' physics output hold up at pile-up of 200 (or 1000)
 - Can tracking maintain low p_T sensitivity within budget?
- Detector design itself has a big impact (e.g., timing detectors, track triggers)
- Improved use of new computing architectures: multi-threaded and vectorised CPU code, GPGPUs,
 FPGAs
- Robust validation techniques when information will be discarded
 - Using modern continuous integration, multiple architectures with reasonable turnaround times
- Reconstruction toolkits can help adapt to experiment specificities: ACTS, TrickTrack, Matriplex

R&D Outlook: A lot of projects in healthy states - keep up level of cooperation and sharing (Connecting the Dots; TrackML Challenge)

Data Analysis and Interpretation

- Today we are dominated by many cycles of data reduction
 - Aim is to reduce the input to an analysis down to a manageable quantity that can be cycled over quickly on "laptop scale resources
 - Key metric is 'time to insight'

Main R&D topics

- How to use the latest techniques in data analysis that come from outside HEP?
 - Particularly from the Machine Learning and Data Science domains
 - Need ways to seamlessly interoperate between their data formats and ROOT
 - Python is the *lingua franca* here, thus guaranteeing our python/C++ bindings is critical
- New Analysis Facilities
 - Skimming/slimming cycles consume large resources and can be inefficient
 - Can interactive data analysis clusters be set up? SWAN, Spark, Dask interesting
 - Characterised by rapid column-wise access reads, with writes of new columns

R&D Outlook: many potential directions, no clear overall structure yet, needs good exchange of information and collaboration with the non-HEP world

Data Processing Frameworks

- Experiment software frameworks provide the scaffolding for algorithmic code
 - Currently there are many implementations of frameworks, with some (limited) sharing between experiments (e.g. ATLAS/LHCb Gaudi)
 - Ongoing efforts in all these frameworks to support concurrency
 - Reasons for so many frameworks are not really related to experiment specificities...
- Main R&D topics
 - Adaptation to new hardware, optimising efficiency and throughput
 - Incorporation of external (co)processing resources, such as GPGPUs
 - Interface with workload management to deal with the inhomogeneity of processing resources
 - Evolution strategy: promote commonalities with common libraries and services
 - Discussions still going on about possible framework consolidation

R&D Outlook: general agreement that it is an area for consolidation in the future, even if no clear path has been identified yet

- Neural networks and Boosted Decision Trees have been used in HEP for a long time
 - o e.g., particle identification algorithms
- The field has been significantly enhanced by new techniques (Deep Neural Networks), enhanced training methods, and community-supported (Python) packages
 - Very good at dealing with noisy data and huge parameter spaces
 - A lot of interest from our community in these new techniques, in multiple fields
- Main R&D topics
 - Speeding up computationally intensive pieces of our workflows (fast simulation, tracking)
 - Enhancing physics reach by classifying better than our current techniques
 - Improving data compression by learning and retaining only salient features
 - Anomaly detection for detector and computing operations

R&D Outlook: good links with the broader Machine Learning and Data Science communities required

Distributed Computing and DOMA

- 2 different sections covering several topics from facilities to data organisation, management and access (DOMA)
 - From technology to more organisational issues
 - Data storage costs are a major driver for LHC today: next decade experiments (HL-LHC, DUNE)
 will bring a step change in data being acquired
 - WLCG operational model as a too high cost for too specific solutions
 - Sites have to support multiple experiments and cannot afford specific technologies
- Main R&D topics
 - Data-lake approach: (federated) large data centers accessible from any kind of computing resources. At the heart of the WLCG DOMA project launched in June.
 - WLCG performance and cost model: a WG formed and active since 6 months to build a (not too complex) model to assess the global impact of computing model changes.

R&D Outlook: strengthen links to other big data sciences (e.g. SKA) and computer science

Other Technical Areas

- Conditions Data and Visualisation: many different products/projects
 - These areas are examples of where we can refocus current effort towards common software solutions and some actions started because of the CWP
 - This should improve quality, economise overall effort and help us to adapt to new circumstances
- Data, Software and Analysis Preservation
 - Challenge is both to preserve physically bits and to preserve knowledge: <u>DPHEP</u> has looked into both
 - Preserving knowledge is the most challenging: CERN <u>Analysis Preservation Portal</u> forms a good basis for further work
- Security: new requirements, new threats, new technologies
 - Must protect our work and our reputation
 - HEP is a structured community and often acts as a driver in common efforts with others

Training and Careers

- To address the technical challenges, we need to raise the SW&Computing expertise in our community
 - Investment in SW is critical to match HL-LHC requirements with a "flat-budget" scenario
 - Sharing between experiments is still an exception: training must become a first class activity
- Historically, many different profiles involved in HEP computing from physicists,
 PhDs to real SW&Computing experts
 - Required by the cutting-edge challenges we face that require all the expertises to collaborate
 - No way to "outsource" the challenging problems to a few experts...
 - Recognition of the contribution of our specialists in their careers is extremely important
- A critical role played by people with a strong physics background + a strong computing expertise
 - Difficult career paths for this profile: neither outstanding physicists nor outstanding SW experts
 - The community does not really have control over this: we depend on national/organisation policies

The CWP: an Important Milestone for HEP SW&C

- The Community White Paper process is concluded and has been a success
 - A real step forward compared to the situation before the CWP, thanks to the fruitful discussions:
 not a shopping list of all the possible ideas
- But the CWP is a milestone, not a final step
 - Links fostered between the people involved in the SW&C of the major HEP experiments
 - R&D program proposed in each area should serve as the basis for future work
 - Concrete paths identified to move towards more common solutions in HEP and to benefit from solutions developed outside the community
- Each experiment must build its own prioritized R&D program out of the CWP
 - Priorities are different between all experiments: not facing the same challenges at the same time or scale: not possible to have a prioritized R&D program at the HEP level
 - On each topic relevant to several experiments, **must work together**

New HSF Working Groups

- HSF is forming working groups in this three key areas of HEP software:
 - Simulation
 - Reconstruction
 - Analysis
- Building on R&D topics proposed in the CWP
- Raise awareness of work being done in these areas
 - Not all projects are as known as they should be
 - New projects can begin with a broad scope and common goals
- These will be areas reviewed by the LHCC next year
 - These groups will able to answer the charge of whether we really have learned to work together or not
 - These WGs will not be HL-LHC specific, but the review can help us drive forwards

Software Forum

- HSF has been established to foster sharing of expertise and increase collaboration around common projects.
 - Needed a place to do it on a regular basis, independently of specific projects
- HSF has (re)launched the <u>Software Forum</u>
 - Showcase common software projects
 - o Introduce tools that help us face challenges like concurrency or vectorisation
 - Open dialogue with other like-minded communities
- Bi-weekly meeting on Wednesday 5pm CET, odd weeks
 - Not restricted to HL-LHC topics: embrace the whole community requirements, experience and tools (FAIR, Intensity Frontier, ILC, FCC, CLIC...)
 - Managed to have only 2 <u>meetings</u> before the summer
 - DD4hep geometry modeling package adopted by CLIC, FCC, CMS with LHCb interested
 - VecCore and SOAContainer: in fact <u>next week</u>

Copyright and Licensing

- HSF has took in charge this much neglected area in HEP software
 - Much code exists with no clear copyright or licence
 - The issues of large and deep stacks of experiments' software and license combinations were often neglected up to now
 - Does impact on our ability to collaborate
- Experiments started to worry about licensing issues (LHC, Belle II)
 - Goal is to maximise our useful user base and foster collaboration with others, including outside HEP
- GPL licenses have become disfavoured as they place obligations on any users that can inhibit collaboration (e.g., with commercial companies)
 - ATLAS and CMS want non-GPL licenses
 - Matches shift at CERN, e.g., Indico moving from GPL to MIT
 - We made significant progress in moving packages like HepMC and DD4hep to LGPL
 - Widespread use of GPL by theory community still affects us greatly (Fastjet, Pythia8 among others)
 - HSF continuing the discussion with authors of "problematic packages"

Other HSF Initiatives...

- Citation: input required from physicists whose concerns are not primarily in software
 - Sustainability of these contributions is extremely important
 - We should become better at publication and citation of work to help this (and use new tools like **Zenodo**)
- Software Development: the more commonality in the tools and techniques, the more training and expertise we can share
 - Build upon LHCb <u>StarterKit</u>: ALICE and LHCb common training recently
 - This helps with preservation and propagation of knowledge
- Software Tools WG: performance analysis (profiling) tools and data
 - Many available tools: try to converge on a few ones to help sharing expertise and data
 - Common work on warehousing and visualisation possible

... Other HSF Initiatives

- Packaging is one of the de facto areas of common interest between experiments
 - Building and deploying our software is a significant
 - Packaging WG decided to formalize the problem around actual <u>use cases</u> we have
 - Several R&D projects looking at possible directions for the future (<u>Nix</u>, <u>Portage</u>, <u>Spack</u>)
- Training: address the training "pyramid" from core skills to experts
 - Organising a federation of training schools
 - Concrete work started on a curated set of training materials
- Topical workshops and events, like those organised around CHEP this year
 - PyHEP, frameworks
- Umbrella organisation for the Google Summer of Code (GSoC)
 - o 2018: 29 projects funded (51 proposed), 25 organisations, 64 mentors

Advancing from Here

- Main areas for our Software Upgrade identified and concrete actions started
 - HL-LHC is a driver: LHC experience helps to better identify the challenges
 - Must be inclusive of the whole HEP community: better links with Intensity Frontier and Belle II
- HSF, with its bottom-up approach, has proved its worth in delivering this CWP
 - Managed to build a community consensus: not an easy and usual process in HEP
 - The challenges are formidable, working together will be the most efficacious way to succeed
 - Now a recognized organization to spread knowledge of new initiatives, to encourage collaboration and to monitor progress
- Organisations and funding agencies support is required for marshalling and refocusing the R&D efforts, and helping to attract new investment in critical areas
 - Career path of the needed experts is of critical importance for the medium/long term
 - CERN led the way with an HSF position in SFT group and CERN/EP R&D plans include SW projects
 - US project of an Institute for Research and Innovation in SW (IRIS-HEP) may play an important role
 - More similar initiatives are needed

Conclusions

- CWP brought us a long way forwards in understanding the problems ahead of us
 - And the areas where we can work together profitably
 - Each project/experiment must build its own strategy out of it, e.g. WLCG Strategy towards HL-LHC
- HSF continues to act as a focal point for common software efforts
 - Organisation of common work around the main technical areas (simulation, reconstruction, analysis)
 - Continued work on important technical matters: licensing, packaging, software tools
 - Inventory of software projects and tools; advice on publication and dissemination; training
 - Communication channels (<u>hsf-forum</u>, <u>hsf-tech-forum</u> lists) are vital
- New working groups will form nuclei of solving the grand challenges
- The program of work built from the CWP must be refined as concrete actions
 - New projects should be <u>agile and cooperative</u> from the outset
 - Support from organisations and funding agencies will be needed

There are many opportunities to be involved and shape our common work in the field

Useful Links...

- HSF Community White Paper web site: links to topical papers, status of their publication to arXiv, updates on related activities, presentations about the CWP
 - https://hepsoftwarefoundation.org/organization/cwp.html
- CWP and related work presentations with additional details
 - o CHEP2106: CWP Status and Plan
 - 4th CERN Scientific Computing Forum (Jan. 2018): <u>CWP Lessons and Future Work</u>
 - WLCG Workshop, Naples, March 2018: <u>CWP Roadmap</u>
 - ATLAS SW&C Week, DESY, June 2018: <u>R&D and Activities after Naples</u>
- WLCG Strategy towards HL-LHC