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I’m going to start with a dumb comparison, to make a point.
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We measure globally distributed data in hundreds of PB
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But for “web scale” companies, 100 PB = 1 truck
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The point?

HEP is no longer the main developer or user in this problem space.

A better metric, which unfortunately I can’t quantify:

I x FTEs in HEP developing open source analysis tools

I y FTEs outside of HEP developing open source analysis tools
(not sure of x and y , but x � y)

→ There’s a lot of good data analysis software out there!
→ → Could adopting it reduce in-house maintenance burdens?
→ → → More training examples and career options for users?
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Show of hands: are you currently using data
analysis software created outside of HEP?

Are you planning to or want to?
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On the other hand. . .
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Another important metric: experience!

I High-energy physicists have been performing big data analytics
(i.e. reducing large datasets to statistical inferences with
computers) for about 50 years.

I Web-scale companies have been doing it for about 10 years.

HEP analyses have grown sophisticated— there are certain things
we expect but don’t find in industry-grade software.

The simple prescription of “just use Spark” would leave analyzers

without some necessary tools.
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Option #1

All of our needs are
specialized.

Continue developing
our own everything.

Option #2

Modern big data
software has some
good ideas;
integrate those
ideas into our stack.

Option #4

Convince the world
to start using HEP
analysis techniques
so that they will
develop solutions
for these, too.

#3 is my opinion, but it begs the question: what’s HEP-specific and what’s not?
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Three examples each:

What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting
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Distributed DAG processing

not HEP-specific
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Distributed DAG processing

DAG: Directed Acyclic Graph of dependencies between subtasks.
Some would say this is what big data processing is.

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Parsl (Python), Storm (continuous),
Thrill (C++), DAGMan (HTCondor), TensorFlow (fitting). . .

To use these frameworks, one must

I express user tasks as DAG nodes (e.g. ROOT RDataFrame);

I serialize user functions on the driver and load user data on the
workers in accordance to the framework’s way of doing things.
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From “REANA: A System for Reusable Research Data Analyses”
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From “Interactive, scalable, reproducible data analysis with con. . .
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From “GNA: new framework for statistical data analysis”
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HEP has adopted the idea of DAGs, but will we be developing our
own DAG-processors or using what we find?

(Can we? Why or why not?)
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Nested data structures

strangely HEP-specific
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Nested data structures

Objects are essential in HEP analysis.

Many physicists consider TTrees with
std::vector<float> branches to be
“minimal” or “flat.”

Most data analysis tools have an SQL
mindset, with rectangular data tables.

Objects → rectangular tables is lossy!

Performance claims often start the
stopwatch after this “data cleaning.”
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Nested data structures

Spark/Parquet/Arrow/HDF5/Pandas
has nested objects!

Nested data are in these projects’
scope, but as a second-class citizen.

I Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

I Parquet and Arrow specifications define lists of records, but they haven’t
been implemented in C++ and therefore Python yet (last time I checked).

I HDF5 has lists of compounds, but they’re rowwise (“unsplit”).

I Pandas can put arbitrary Python objects in DataFrames, but most
operations only apply to numbers.
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Nested data structures
>>> import uproot
>>> t = uproot.open("tests/samples/HZZ.root")["events"]
>>> t.pandas.df(["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=False)

MET_px Muon_Px Electron_Px
2401 2.998099 [-1.492689] []
2402 27.944883 [-4.560287] []
2403 3.787466 [-9.715589] []
2404 9.378232 [-31.072098] []
2405 -17.310106 [47.484627, 4.6953125] []
2406 -81.965927 [74.75617, -20.911081] []
2407 -9.059591 [25.786427, -29.265024] []
2408 25.649775 [] []
2409 29.691553 [-24.7368] []
2410 -25.754967 [53.005814, -30.208649] [-37.681973, 18.453588]
2411 -2.426847 [55.7203, -26.914448] []
2412 -15.611773 [14.896802] []
2413 18.921183 [-24.158083] []
2414 -11.730723 [-9.204197] []
2415 -10.648725 [34.506527, -31.56778] []
2416 -14.607650 [-39.285824] []
2417 22.208313 [35.067146] []
2418 18.101646 [-29.756786] []
2419 79.875191 [1.1418698] []
2420 19.713749 [23.913206] []

In some cases, maybe we’re
using the wrong idiom:
instead of working with
structured values, Pandas
prefers structured indexes.
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Nested data structures

But that shouldn’t be the only way: we should be able to use our data models
and algorithms, even if we run them in non-HEP frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model

@numba.jit # LLVM-compiled Python
def deltaphi(event):

metphi = event.MET.phi
for jet in event.jets:

yield metphi - jet.phi

Numpy-like broadcasting

# one per event one per particle
event["MET"]["phi"] - event["jet"]["phi"]

Also, this should be of wider interest than HEP: developers of Arrow, Dask, and
XND (∼Numpy 2.0) are curious about it.
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Missed opportunity

1970 1980 1990 2000 2010 2020

ZEBRA
(1983)

YBOS
(CDF r1)

Objectivity
(c.1994‒2004)

HYDRA
(1973)

ZBOOK
(1974)

BOS
(1975)

ROOT
(1995)

CWN
in PAW
(1989)

FORTRAN C++

MonetDB
(2002)

C-Store
(2005)

Dremel
(2010)

Parquet
(2013)

Arrow
(2016)

ProtoBuf
(2001) Avro

(2009) 

Nested Data Structures
in HEP

Google Dremel paper (2010):
(inspired Parquet)
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Indexed analysis

not well-known in HEP
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Indexed analysis

To understand what I mean by “indexed analysis,” consider
analysis with less advanced indexing than modern HEP.
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Indexed analysis
h/cr/1d 201 ’d0miss’ 100 -0.5e-3 0.5e-3
h/cr/1d 202 ’z0miss’ 100 -0.015 0.015
h/cr/1d 203 ’pxmiss’ 100 -0.076 0.076
h/cr/1d 204 ’pymiss’ 100 -0.076 0.076
h/cr/1d 205 ’pzmiss’ 100 -0.076 0.076
nt/plot 2.d0 ! ! ! ! ! 201
nt/plot 2.z0 ! ! ! ! ! 202
nt/plot 2.px ! ! ! ! ! 203
nt/plot 2.py ! ! ! ! ! 204
nt/plot 2.pz ! ! ! ! ! 205

h/cr/1d 301 ’normalized d0miss’ 100 -10 10
h/cr/1d 302 ’normalized z0miss’ 100 -10 10
h/cr/1d 303 ’normalized pxmiss’ 100 -10 10
h/cr/1d 304 ’normalized pymiss’ 100 -10 10
h/cr/1d 305 ’normalized pzmiss’ 100 -10 10
nt/plot 2.d0/sqrt(ed0) ! ! ! ! ! 301
nt/plot 2.z0/sqrt(ez0) ! ! ! ! ! 302
nt/plot 2.px/sqrt(epx) ! ! ! ! ! 303
nt/plot 2.py/sqrt(epy) ! ! ! ! ! 304
nt/plot 2.pz/sqrt(epz) ! ! ! ! ! 305

h/cr/1d 401 ’d0miss after constraint’ 100 -0.1e-16 0.1e-16
h/cr/1d 402 ’z0miss after constraint’ 100 -0.1e-15 0.1e-15
h/cr/1d 403 ’pxmiss after constraint’ 100 -0.01 0.01
h/cr/1d 404 ’pymiss after constraint’ 100 -0.01 0.01
h/cr/1d 405 ’pzmiss after constraint’ 100 -0.01 0.01
nt/plot 2.ad0 ! ! ! ! ! 401
nt/plot 2.az0 ! ! ! ! ! 402
nt/plot 2.apx ! ! ! ! ! 403
nt/plot 2.apy ! ! ! ! ! 404
nt/plot 2.apz ! ! ! ! ! 405

To the left is a PAW script (pre-ROOT),
creating and filling histograms.

Histograms were indexed by numbers
because they didn’t have names back then.

The ability to name stuff was as
fundamental to HEP data analysis as
handwashing was to medical science!

But we don’t have to stop there. There’s
more to indexing than name-value pairs.
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From “Pandas DataFrames for F.A.S.T. binned analysis at CMS”

Pandas
DataFrames
filled by
AlphaTwirl,
analyzed by
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Indexed analysis

I had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import *
>>> multihist = Hist(bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.pandas()

count() err(count())
mass q1*q2 < 0 mt1 mt2
[-inf, 0.0) fail [-inf, 0.2) [-inf, 0.2) 0.0 0.0

[0.2, 0.5) 0.0 0.0
[0.5, inf) 0.0 0.0

[0.2, 0.5) [-inf, 0.2) 0.0 0.0
[0.2, 0.5) 0.0 0.0
[0.5, inf) 0.0 0.0

[0.5, inf) [-inf, 0.2) 0.0 0.0
[0.2, 0.5) 0.0 0.0
[0.5, inf) 0.0 0.0

pass [-inf, 0.2) [-inf, 0.2) 0.0 0.0
[0.2, 0.5) 0.0 0.0
[0.5, inf) 0.0 0.0

[0.2, 0.5) [-inf, 0.2) 0.0 0.0
[0.2, 0.5) 0.0 0.0
[0.5, inf) 0.0 0.0

[0.5, inf) [-inf, 0.2) 0.0 0.0
[0.2, 0.5) 0.0 0.0
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>>> multihist.step("mass")
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>>> multihist.stack("q1*q2 < 0").area("mass")

fail
pass

q1*q2 < 0

0 100 200 300 400 500
mass

0

20

40

60

80

100

120

st
a
ck

e
d

 c
o
u
n

t

26 / 33



Indexed analysis

I had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import *
>>> multihist = Hist(bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.beside("q1*q2 < 0").step("mass")

q1*q2 < 0

0

20

40

60

80

co
u
n
t

fail pass

0 100 200 300 400 500
mass

0 100 200 300 400 500
mass

26 / 33



Indexed analysis

I had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import *
>>> multihist = Hist(bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below("mt1").beside("mt2").step("mass")

m
t1

mt2
[-

in
f,

 0
.2

)

0

10

20

30

40

50

60

70
co

u
n
t

[0
.2

, 
0

.5
)

0

10

20

30

40

50

60

70

co
u
n
t

[0
.5

, 
in

f)

0

10

20

30

40

50

60

70

co
u
n
t

[-inf, 0.2) [0.2, 0.5) [0.5, inf)

0 100 200 300 400 500
mass

0 100 200 300 400 500
mass

0 100 200 300 400 500
mass

26 / 33



Indexed analysis

I had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
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Indexed analysis

Using tools with rich indexing systemizes what we’re already doing
with naming conventions, splitting names on underscores, etc.

Pandas is not a TTree replacement— if anything,
it’s a histogram organizer!
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Advanced histogramming

very HEP-specific
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Advanced histogramming

The histograms themselves, however, are more sophisticated in
HEP than elsewhere.

I As far as I have found, only HEP histogramming tools (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn fit, PAW, HBOOK) conceive of
histograms as containers to be filled, merged, and accessed programmatically.

I In many non-HEP packages, “histogram” is more of a display option than an
analysis tool, with no way to access contents or control binning.

I “Profile” plots are only in HEP. Robust log scales are hard to find, too.

These features aren’t difficult, but they’re our responsibility.
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Machine learning versus ansatz fitting
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Machine learning versus ansatz fitting

My take on machine learning: it’s fitting.

It’s fitting with thousands of free parameters, where the goal is not to find a
global minimum or understand the limiting value of those parameters, but to
generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters,
and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: both needed.

We can look to industry for machine learning innovations, but the best ansatz
fitters are in HEP: RooFit, RooStats, GooFit, HistFitter, HistFactory, pyhf. . .
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Areas of overlap

What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting
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1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting

Nearly all ML techniques require flattened or sequences of flattened data,
but we have real problems that need nested data: e.g. classifying Ni jets per event
(nested, unordered sets). RNNs and LSTMs (for non-nested, ordered sequences)
are designed for a different data type!
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What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting

F.A.S.T. and histbook are incorporating Pandas indexing into advanced
histogramming.
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Areas of overlap

What they’ve got

1. Distributed DAG processing

2. Indexed analysis

3. Machine learning

What we’d need

1. Nested data structures

2. Advanced histogramming

3. Ansatz fitting

As fits get bigger, they may need to be distributed, for instance with
iterative map-reduce.
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Conclusions

Data analysis tools outside of HEP are mature but not a perfect fit
to our needs.

I Some of what we need is available now: can we use it?

I Some exists only as HEP software: can it interoperate?

I Some of what’s available is unlike anything we do now:
an opportunity to do better physics?

I The door swings both ways: we have things to teach the world!
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