

Data analysis tools from within HEP and from industry

Jim Pivarski

Princeton University - DIANA-HEP

July 12, 2018

I'm going to start with a dumb comparison, to make a point.

We measure globally distributed data in hundreds of PB

Pandolfi on 6 Jul 2017. Last updated 7 Jul 2017, 11.18.

Voir en frança

This content is archived on the CERN Document Server

CERN UPDATES

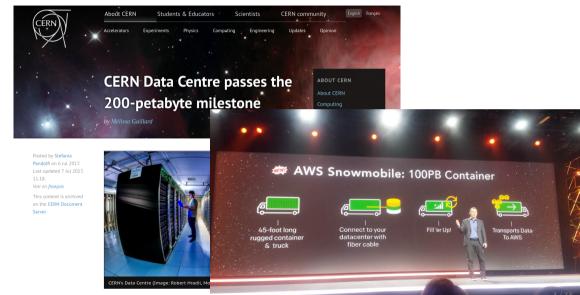
Next stop: the superconducting magnets of the future

CERN openlab tackles ICT challenges of High-Luminosity LHC

21 Sep 2017

Detectors: unique superconducting magnets 20 Sep 2017

But for "web scale" companies, 100 PB = 1 truck



HEP is no longer the main developer or user in this problem space.

HEP is no longer the main developer or user in this problem space.

- ► x FTEs in HEP developing open source analysis tools
- ▶ y FTEs outside of HEP developing open source analysis tools (not sure of x and y, but $x \ll y$)

HEP is no longer the main developer or user in this problem space.

- ▶ *x* FTEs in HEP developing open source analysis tools
- ▶ y FTEs outside of HEP developing open source analysis tools (not sure of x and y, but $x \ll y$)
- ightarrow There's a lot of good data analysis software out there!

HEP is no longer the main developer or user in this problem space.

- x FTEs in HEP developing open source analysis tools
- ▶ y FTEs outside of HEP developing open source analysis tools (not sure of x and y, but $x \ll y$)
- → There's a lot of good data analysis software out there!
 - \rightarrow Could adopting it reduce in-house maintenance burdens?

HEP is no longer the main developer or user in this problem space.

- x FTEs in HEP developing open source analysis tools
- ▶ y FTEs outside of HEP developing open source analysis tools (not sure of x and y, but $x \ll y$)
- → There's a lot of good data analysis software out there!
 - → Could adopting it reduce in-house maintenance burdens?
 - \rightarrow More training examples and career options for users?

Show of hands: are you currently using data analysis software created outside of HEP?

Show of hands: are you currently using data analysis software created outside of HEP?

Are you planning to or want to?

On the other hand...

► High-energy physicists have been performing big data analytics (i.e. reducing large datasets to statistical inferences with computers) for about 50 years.

- ► High-energy physicists have been performing big data analytics (i.e. reducing large datasets to statistical inferences with computers) for about 50 years.
- ▶ Web-scale companies have been doing it for about 10 years.

- ► High-energy physicists have been performing big data analytics (i.e. reducing large datasets to statistical inferences with computers) for about 50 years.
- ▶ Web-scale companies have been doing it for about 10 years.

HEP analyses have grown sophisticated— there are certain things we expect but don't find in industry-grade software.

- ► High-energy physicists have been performing big data analytics (i.e. reducing large datasets to statistical inferences with computers) for about 50 years.
- ▶ Web-scale companies have been doing it for about 10 years.

HEP analyses have grown sophisticated— there are certain things we expect but don't find in industry-grade software.

The simple prescription of "just use Spark" would leave analyzers without some necessary tools.

All of our needs are specialized.

Continue developing our own everything.

All of our needs are specialized.

Continue developing our own everything.

Option #2

Modern big data software has some good ideas; integrate those *ideas* into our stack.

All of our needs are specialized.

Continue developing our own everything.

Option #2

Modern big data software has some good ideas; integrate those <u>ideas</u> into our stack.

Option #3

Narrow our scope to HEP-specific tools, what no one else is developing, and make them interoperate with non-HEP tools for the common parts.

All of our needs are specialized.

Continue developing our own everything.

Option #2

Modern big data software has some good ideas; integrate those <u>ideas</u> into our stack.

Option #3

Narrow our scope to HEP-specific tools, what no one else is developing, and make them interoperate with non-HEP tools for the common parts.

Option #4

Convince the world to start using HEP analysis techniques so that they will develop solutions for these, too.

All of our needs are specialized.

Continue developing our own everything.

Option #2

Modern big data software has some good ideas; integrate those <u>ideas</u> into our stack.

Option #3

Narrow our scope to HEP-specific tools, what no one else is developing, and make them interoperate with non-HEP tools for the common parts.

Option #4

Convince the world to start using HEP analysis techniques so that they will develop solutions for these, too.

#3 is my opinion, but it begs the question: what's HEP-specific and what's not?

Three examples each:

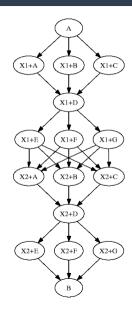
What they've got

- 1. Distributed DAG processing
- 2. Indexed analysis
- 3. Machine learning

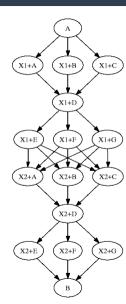
What we'd need

- 1. Nested data structures
- 2. Advanced histogramming
- 3. Ansatz fitting

not HEP-specific



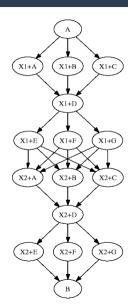
DAG: Directed Acyclic Graph of dependencies between subtasks. Some would say this is what big data processing \underline{is} .



DAG: Directed Acyclic Graph of dependencies between subtasks. Some would say this is what big data processing *is*.

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Parsl (Python), Storm (continuous), Thrill (C++), DAGMan (HTCondor), TensorFlow (fitting)...



DAG: Directed Acyclic Graph of dependencies between subtasks. Some would say this is what big data processing *is*.

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Parsl (Python), Storm (continuous), Thrill (C++), DAGMan (HTCondor), TensorFlow (fitting)...

To use these frameworks, one must

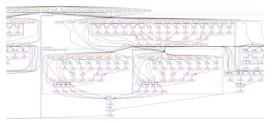
- express user tasks as DAG nodes (e.g. ROOT RDataFrame);
- serialize user functions on the driver and load user data on the workers in accordance to the framework's way of doing things.

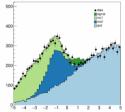
From "REANA: A System for Reusable Research Data Analyses"

Reproducible research data analysis platform

http://www.reana.io/

Example: BSM search





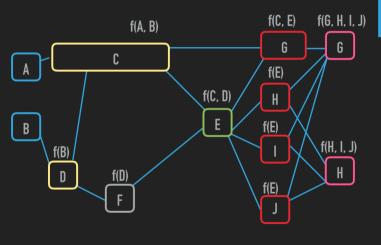
https://github.com/reanahub/reana-demo-bsm-search/

Complex computational workflows typical in particle physics analyses.

@tiborsimko 13/18 12/33

From "Interactive, scalable, reproducible data analysis with con. . .

RICH EXPRESSION OF DEPENDENCIES



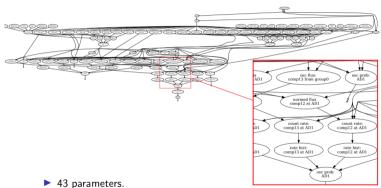
Apps run concurrently, respecting data dependencies via futures. Implicit parallel programming!

Dynamic: apps can create apps! Apps can be recursive!

From "GNA: new framework for statistical data analysis"

Computational graph example

The whole JUNO graph



- ▶ The JUNO graph contains 110 nodes and 174 edges.
- ▶ It produces a histogram of 280 bins.

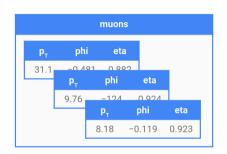
10 / 15

14 / 33

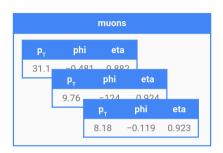
HEP has adopted the idea of DAGs, but will we be developing our own DAG-processors or using what we find?

(Can we? Why or why not?)

strangely HEP-specific



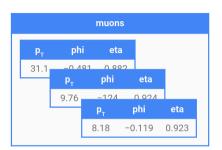
mu1 P _T	mu1 phi	mu1 eta	mu2 P _T	mu2 phi	mu2 eta
31.1	-0.481	0.882	9.76	-0.124	0.924
5.27	1.246	-0.991	n/a	n/a	n/a
4.72	-0.207	0.953	n/a	n/a	n/a
8.59	-1.754	-0.264	8.714	0.185	0.629



mu1 P _T	mu1 phi	mu1 eta	mu2 P _T	mu2 phi	mu2 eta
31.1	-0.481	0.882	9.76	-0.124	0.924
5.27	1.246	-0.991	n/a	n/a	n/a
4.72	-0.207	0.953	n/a	n/a	n/a
8.59	-1.754	-0.264	8.714	0.185	0.629

Objects are essential in HEP analysis.

Many physicists consider TTrees with std::vector<float> branches to be "minimal" or "flat."



Objects are essential in HEP analysis.

Many physicists consider TTrees with std::vector<float> branches to be "minimal" or "flat"

mu1 P _T	mu1 phi	mu1 eta	mu2 p _T	mu2 phi	mu2 eta
31.1	-0.481	0.882	9.76	-0.124	0.924
5.27	1.246	-0.991	n/a	n/a	n/a
4.72	-0.207	0.953	n/a	n/a	n/a
8.59	-1.754	-0.264	8.714	0.185	0.629

Most data analysis tools have an SQL mindset, with rectangular data tables.

Objects \rightarrow rectangular tables is lossy!

Performance claims often start the stopwatch after this "data cleaning."

 ${\bf Spark/Parquet/Arrow/HDF5/Pandas} \\ {\bf has\ nested\ objects!}$

Spark/Parquet/Arrow/HDF5/Pandas has nested objects!

Nested data are in these projects' scope, but as a second-class citizen.

Spark/Parquet/Arrow/HDF5/Pandas has nested objects!

Nested data are in these projects' scope, but as a second-class citizen.

▶ Spark DataFrames allow arrays of structs, but using them involves a cumbersome explode-groupby or "drop to RDDs," giving up performance.

Spark/Parquet/Arrow/HDF5/Pandas has nested objects!

Nested data are in these projects' scope, but as a second-class citizen.

- ▶ Spark DataFrames allow arrays of structs, but using them involves a cumbersome explode-groupby or "drop to RDDs," giving up performance.
- ▶ Parquet and Arrow specifications define lists of records, but they haven't been implemented in C++ and therefore Python yet (last time I checked).

Spark/Parquet/Arrow/HDF5/Pandas has nested objects!

Nested data are in these projects' scope, but as a second-class citizen.

- ▶ Spark DataFrames allow arrays of structs, but using them involves a cumbersome explode-groupby or "drop to RDDs," giving up performance.
- ▶ Parquet and Arrow specifications define lists of records, but they haven't been implemented in C++ and therefore Python yet (last time I checked).
- ▶ HDF5 has lists of compounds, but they're rowwise ("unsplit").

Spark/Parquet/Arrow/HDF5/Pandas has nested objects!

Nested data are in these projects' scope, but as a second-class citizen.

- ▶ Spark DataFrames allow arrays of structs, but using them involves a cumbersome explode-groupby or "drop to RDDs," giving up performance.
- ▶ Parquet and Arrow specifications define lists of records, but they haven't been implemented in C++ and therefore Python yet (last time I checked).
- ▶ HDF5 has lists of compounds, but they're rowwise ("unsplit").
- ▶ Pandas can put arbitrary Python objects in DataFrames, but most operations only apply to numbers.

19.713749

2420


```
>>> import uproot
>>> t = uproot.open("tests/samples/HZZ.root")["events"]
>>> t.pandas.df(["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=False)
         MET px
                                  Muon Px
                                                        Electron Px
2401
       2.998099
                              [-1.4926891
2402
      27.944883
                              [-4.560287]
2403
       3.787466
                              [-9.7155891
2404
       9.378232
                             [-31.0720981
2405 -17.310106
                   [47.484627, 4.6953125]
2406 -81.965927
                   [74.75617, -20.911081]
      -9.059591
                  [25.786427, -29.265024]
2407
2408
      25.649775
2409
      29.691553
                               [-24.7368]
2410 -25.754967
                  [53.005814, -30.208649]
                                            [-37.681973, 18.453588]
2411 -2 426847
                    [55.7203. -26.914448]
2412 -15.611773
                              [14.896802]
2413 18.921183
                             [-24.1580831
2414 -11.730723
                              [-9.2041971
2415 -10.648725
                                                                  []
                   [34.506527, -31.56778]
2416 -14.607650
                             [-39.285824]
2417
     22.208313
                              [35.067146]
2418
     18.101646
                             [-29.7567861
     79.875191
2419
                              [1.1418698]
```

[23.913206]

In some cases, maybe we're using the wrong idiom: instead of working with structured values, Pandas prefers structured indexes.

>>> import uproot

2419

2420


```
>>> t = uproot.open("tests/samples/HZZ.root")["events"]
>>> t.pandas.df(["MET px", "Muon Px", "Electron Px"], entrystart=-20, flatten=True)
                   MET px
                              Muon Px
                                       Electron Px
entry subentry
2401
                 2.998099 -1.492689
2402
                27.944883 -4.560287
                                               NaN
2403
                 3.787466 -9.715589
                                               NaN
2404
                 9.378232 -31.072098
                                               NaN
2405
               -17.310106 47.484627
                                               NaN
                            4.695312
                      NaN
                                               NaN
                          74 756172
2406
               -81 965927
                                               NaN
                      NaN -20.911081
                                               NaN
2407
                -9.059591 25.786427
                                               NaN
                      NaN -29.265024
                                               NaN
2408
                25.649775
                                 NaN
                                               NaN
2409
                29.691553 -24.736799
                                              NaN
2410
               -25.754967 53.005814
                                       -37.681973
                      NaN -30.208649
                                        18.453588
2411
                -2.426847 55.720299
                                               NaN
                      NaN -26.914448
                                               NaN
2412
               -15.611773
                          14.896802
                                               M = M
2413
                18.921183 -24.158083
                                               NaN
2414
               -11.730723 -9.204197
                                               NaN
2415
               -10.648725
                           34.506527
                                               NaN
                      NaN -31.567780
                                               NaN
2416
               -14.607650 -39.285824
                                               NaN
2417
                22.208313 35.067146
                                               NaN
2418
                18.101646 -29.756786
                                               NaN
```

1.141870

NaN

NaN

79.875191

19.713749 23.913206

In some cases, maybe we're using the wrong idiom: instead of working with structured values, Pandas prefers structured indexes.

But that shouldn't be the only way: we *should* be able to use our data models and algorithms, even if we run them in non-HEP frameworks.

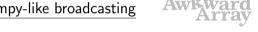
But that shouldn't be the only way: we should be able to use our data models and algorithms, even if we run them in non-HEP frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model

```
@numba.jit # LLVM-compiled Python
def deltaphi(event):
   metphi = event.MET.phi
   for jet in event.jets:
       vield metphi - jet.phi
```

Numpy-like broadcasting



```
# one per event one per particle
event("MET")["phi"] - event("jet"]["phi"]
```


But that shouldn't be the only way: we should be able to use our data models and algorithms, even if we run them in non-HEP frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model

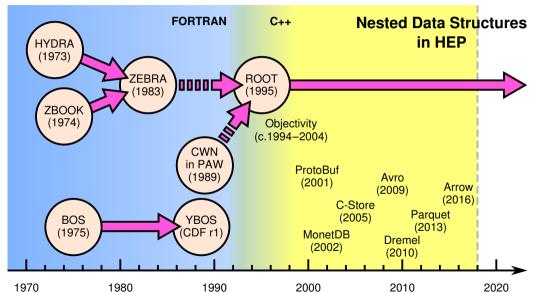
```
@numba.jit # LLVM-compiled Python
def deltaphi(event):
   metphi = event.MET.phi
   for jet in event.jets:
       vield metphi - jet.phi
```

Numpy-like broadcasting

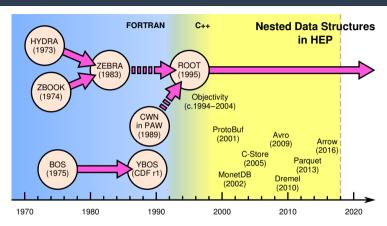

```
# one per event one per particle
event("MET")["phi"] - event("jet"]["phi"]
```

Also, this should be of wider interest than HEP: developers of Arrow, Dask, and XND (\sim Numpy 2.0) are curious about it.

Missed opportunity



Missed opportunity



Google Dremel paper (2010): (inspired Parquet)

storage and reduce CPU cost due to cheaper compression. Column stores have been adopted for analyzing relational data [1] but to the best of our knowledge have not been extended to nested data models. The columnar storage format that we present is supported by

not well-known in HEP

To understand what I mean by "indexed analysis," consider analysis with <u>less advanced indexing</u> than modern HEP.

nt/plot 2.apv ! ! ! ! 404

nt/plot 2.apz ! ! ! ! 405


```
h/cr/1d 201 'd0miss' 100 -0.5e-3 0.5e-3
h/cr/1d 202 'z0miss' 100 -0.015 0.015
h/cr/1d 203 'pxmiss' 100 -0.076 0.076
h/cr/1d 204 'pymiss' 100 -0.076 0.076
h/cr/1d 205 'pzmiss' 100 -0.076 0.076
nt/plot 2.d0 ! ! ! ! ! 201
nt/plot 2.z0 ! ! ! ! ! 202
nt/plot 2.px ! ! ! ! 203
nt/plot 2.pv ! ! ! ! 204
nt/plot 2.pz ! ! ! ! 205
h/cr/1d 301 'normalized d0miss' 100 -10 10
h/cr/1d 302 'normalized z0miss' 100 -10 10
h/cr/1d 303 'normalized pxmiss' 100 -10 10
h/cr/1d 304 'normalized pymiss' 100 -10 10
h/cr/1d 305 'normalized pzmiss' 100 -10 10
nt/plot 2.d0/sqrt(ed0) ! ! ! ! ! 301
nt/plot 2.z0/sgrt(ez0) ! ! ! ! ! 302
nt/plot 2.px/sqrt(epx) ! ! ! ! 303
nt/plot 2.py/sqrt(epy) ! ! ! ! 304
nt/plot 2.pz/sgrt(epz) ! ! ! ! 305
h/cr/ld 401 'd0miss after constraint' 100 -0.1e-16 0.1e-16
h/cr/1d 402 'z0miss after constraint' 100 -0.1e-15 0.1e-15
h/cr/1d 403 'pxmiss after constraint' 100 -0.01 0.01
h/cr/1d 404 'pymiss after constraint' 100 -0.01 0.01
h/cr/1d 405 'pzmiss after constraint' 100 -0.01 0.01
nt/plot 2.ad0 ! ! ! ! ! 401
nt/plot 2.az0 ! ! ! ! ! 402
nt/plot 2.apx ! ! ! ! 403
```

To the left is a PAW script (pre-ROOT), creating and filling histograms.

Histograms were indexed by numbers because they didn't have <u>names</u> back then.

nt/plot 2.apz ! ! ! ! 405


```
h/cr/1d 201 'd0miss' 100 -0.5e-3 0.5e-3
h/cr/1d 202 'z0miss' 100 -0.015 0.015
h/cr/1d 203 'pxmiss' 100 -0.076 0.076
h/cr/1d 204 'pymiss' 100 -0.076 0.076
h/cr/1d 205 'pzmiss' 100 -0.076 0.076
nt/plot 2.d0 ! ! ! ! ! 201
nt/plot 2.z0 ! ! ! ! ! 202
nt/plot 2.px ! ! ! ! 203
nt/plot 2.pv ! ! ! ! 204
nt/plot 2.pz ! ! ! ! 205
h/cr/1d 301 'normalized d0miss' 100 -10 10
h/cr/1d 302 'normalized z0miss' 100 -10 10
h/cr/1d 303 'normalized pxmiss' 100 -10 10
h/cr/1d 304 'normalized pymiss' 100 -10 10
h/cr/1d 305 'normalized pzmiss' 100 -10 10
nt/plot 2.d0/sqrt(ed0) ! ! ! ! ! 301
nt/plot 2.z0/sgrt(ez0) ! ! ! ! ! 302
nt/plot 2.px/sqrt(epx) ! ! ! ! 303
nt/plot 2.py/sqrt(epy) ! ! ! ! 304
nt/plot 2.pz/sgrt(epz) ! ! ! ! 305
h/cr/ld 401 'd0miss after constraint' 100 -0.1e-16 0.1e-16
h/cr/1d 402 'z0miss after constraint' 100 -0.1e-15 0.1e-15
h/cr/1d 403 'pxmiss after constraint' 100 -0.01 0.01
h/cr/1d 404 'pymiss after constraint' 100 -0.01 0.01
h/cr/1d 405 'pzmiss after constraint' 100 -0.01 0.01
nt/plot 2.ad0 ! ! ! ! ! 401
nt/plot 2.az0 ! ! ! ! ! 402
nt/plot 2.apx ! ! ! ! 403
nt/plot 2.apv ! ! ! ! 404
```

To the left is a PAW script (pre-ROOT), creating and filling histograms.

Histograms were indexed by numbers because they didn't have <u>names</u> back then.

The ability to name stuff was as fundamental to HEP data analysis as handwashing was to medical science!


```
h/cr/1d 201 'd0miss' 100 -0.5e-3 0.5e-3
h/cr/1d 202 'z0miss' 100 -0.015 0.015
h/cr/1d 203 'pxmiss' 100 -0.076 0.076
h/cr/1d 204 'pymiss' 100 -0.076 0.076
h/cr/1d 205 'pzmiss' 100 -0.076 0.076
nt/plot 2.d0 ! ! ! ! ! 201
nt/plot 2.z0 ! ! ! ! ! 202
nt/plot 2.px ! ! ! ! !
nt/plot 2.pv ! ! ! ! 204
nt/plot 2.pz ! ! ! ! 205
h/cr/1d 301 'normalized d0miss' 100 -10 10
h/cr/1d 302 'normalized z0miss' 100 -10 10
h/cr/1d 303 'normalized pxmiss' 100 -10 10
h/cr/1d 304 'normalized pymiss' 100 -10 10
h/cr/1d 305 'normalized pzmiss' 100 -10 10
nt/plot 2.d0/sqrt(ed0) ! ! ! ! ! 301
nt/plot 2.z0/sqrt(ez0) ! ! ! ! ! 302
nt/plot 2.px/sqrt(epx) ! ! ! ! 303
nt/plot 2.py/sqrt(epy) ! ! ! ! 304
nt/plot 2.pz/sgrt(epz) ! ! ! ! 305
h/cr/ld 401 'd0miss after constraint' 100 -0.1e-16 0.1e-16
h/cr/1d 402 'z0miss after constraint' 100 -0.1e-15 0.1e-15
h/cr/1d 403 'pxmiss after constraint' 100 -0.01 0.01
h/cr/1d 404 'pymiss after constraint' 100 -0.01 0.01
h/cr/1d 405 'pzmiss after constraint' 100 -0.01 0.01
nt/plot 2.ad0 ! ! ! ! ! 401
nt/plot 2.az0 ! ! ! ! ! 402
nt/plot 2.apx ! ! ! ! 403
nt/plot 2.apv ! ! ! ! 404
nt/plot 2.apz ! ! ! ! 405
```

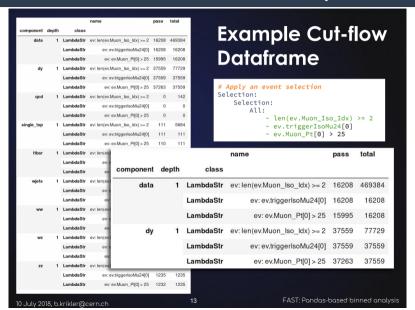
To the left is a PAW script (pre-ROOT), creating and filling histograms.

Histograms were indexed by numbers because they didn't have <u>names</u> back then.

The ability to name stuff was as fundamental to HEP data analysis as handwashing was to medical science!

But we don't have to stop there. There's more to indexing than name-value pairs.

From "Pandas DataFrames for F.A.S.T. binned analysis at CMS"



Pandas
DataFrames
filled by
AlphaTwirl,
analyzed by
F.A.S.T.

From "Pandas DataFrames for F.A.S.T. binned analysis at CMS"

Manipulating DFs: Long to wide form

```
df["err"] = np.sgrt(df.nvar)
# Switch to long-form
df2 = df.pivot table(index="dimu mass", columns="component", values=["n", "err"])
df2 = df2.sort index(axis=1, ascending=False)
# Sort components to match tutorial
order = ["data", "ttbar", "wjets", "dy", "ww", "wz", "zz", "qcd", "single top"]
df2 = df2.reindex(order, axis=1, level="component")
# Show first 10 rows
df2.head(18)
                0.274432
                                  29.271624 0.068484 0.038697
                                                                                     0.274432
                 0.000000
                                  22 941727 0 194258 0 000000 0 009475
                                                                                     0.000000
                 0.847224
                                  20.534599 0.065338 0.081642 0.009540
           31.0 0.753107
                                 26.971645 0.024008 0.042326 0.000000
```

Pandas DataFrames filled by AlphaTwirl, analyzed by F.A.S.T.

Depending on task, "wide-form" tables can be easier to work with

I had the same thought: our primary examples of indexable data are histograms and systems of related histograms. Rich indexing would let us project/rebin/cut/transform histograms more fluidly.

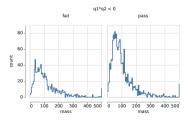
```
>>> from histbook import *
>>>  multihist = Hist(bin("mass", 100, 0, 500), cut("g1*g2 < 0"),
                          split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
. . .
>>> multihist.pandas()
                                              count() err(count())
             a1*a2 < 0 mt1
                                  mt 2
mass
[-inf, 0.0)
             fail
                       [-inf, 0.2) [-inf, 0.2)
                                                  0.0
                                                              0.0
                                  [0.2, 0.5)
                                                  0.0
                                                              0.0
                                  [0.5. inf)
                                                 0.0
                                                              0.0
                       [0.2, 0.5) [-inf, 0.2)
                                                 0.0
                                                              0.0
                                  [0.2, 0.5)
                                                 0.0
                                                              0.0
                                  [0.5, inf)
                                                 0.0
                                                              0.0
                       [0.5, inf) [-inf, 0.2)
                                                 0.0
                                                              0.0
                                  [0.2, 0.5)
                                                  0.0
                                                              0.0
                                  [0.5. inf)
                                                  0.0
                                                              0.0
                       [-\inf, 0.2) [-\inf, 0.2)
                                                  0.0
                                                              0.0
             pass
                                                  0.0
                                  [0.2, 0.5)
                                                              0.0
                                  [0.5, inf)
                                                  0.0
                                                              0.0
                       [0.2, 0.5) [-inf, 0.2)
                                                  0.0
                                                              0.0
                                  [0.2, 0.5)
                                                  0.0
                                                              0.0
                                  [0.5, inf)
                                                  0.0
                                                              0.0
                       [0.5, inf) [-inf, 0.2)
                                                  0.0
                                                              0.0
```

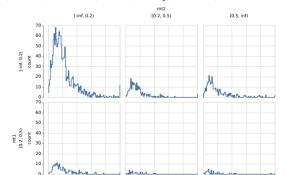
.


```
>>> from histbook import *
>>> multihist = Hist(bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.overlay("q1*q2 < 0").step("mass")
```

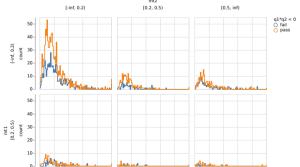


```
>>> from histbook import *
>>> multihist = Hist(bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.stack("q1*q2 < 0").area("mass")
```




```
>>> from histbook import *
>>> multihist = Hist(bin("mass", 100, 0, 500), cut("q1*q2 < 0"),
... split("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below("mt1").beside("mt2").overlay("q1*q2 < 0").step("mass")
```



Using tools with rich indexing systemizes what we're already doing with naming conventions, splitting names on underscores, etc.

Pandas is not a TTree replacement— if anything, it's a histogram organizer!

very HEP-specific

The histograms themselves, however, are more sophisticated in HEP than elsewhere.

The histograms themselves, however, are more sophisticated in HEP than elsewhere.

▶ As far as I have found, *only* HEP histogramming tools (ROOT, YODA, go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of histograms as containers to be filled, merged, and accessed programmatically.

The histograms themselves, however, are more sophisticated in HEP than elsewhere.

- As far as I have found, <u>only</u> HEP histogramming tools (ROOT, YODA, go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of histograms as containers to be filled, merged, and accessed programmatically.
- ▶ In many non-HEP packages, "histogram" is more of a display option than an analysis tool, with no way to access contents or control binning.

The histograms themselves, however, are more sophisticated in HEP than elsewhere.

- As far as I have found, <u>only</u> HEP histogramming tools (ROOT, YODA, go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of histograms as containers to be filled, merged, and accessed programmatically.
- ▶ In many non-HEP packages, "histogram" is more of a display option than an analysis tool, with no way to access contents or control binning.
- "Profile" plots are only in HEP. Robust log scales are hard to find, too.

The histograms themselves, however, are more sophisticated in HEP than elsewhere.

- ▶ As far as I have found, <u>only</u> HEP histogramming tools (ROOT, YODA, go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of histograms as containers to be filled, merged, and accessed programmatically.
- ▶ In many non-HEP packages, "histogram" is more of a display option than an analysis tool, with no way to access contents or control binning.
- "Profile" plots are only in HEP. Robust log scales are hard to find, too.

These features aren't difficult, but they're our responsibility.

My take on machine learning: it's fitting.

My take on machine learning: it's fitting.

It's fitting with thousands of free parameters, where the goal is not to find a global minimum or understand the limiting value of those parameters, but to generate, recognize, or classify patterns.

My take on machine learning: it's fitting.

It's fitting with thousands of free parameters, where the goal is not to find a global minimum or understand the limiting value of those parameters, but to generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters, and the exact shape of the minimum has implications for the theory.

My take on machine learning: it's fitting.

It's fitting with thousands of free parameters, where the goal is not to find a global minimum or understand the limiting value of those parameters, but to generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters, and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: **both needed.**

My take on machine learning: it's fitting.

It's fitting with thousands of free parameters, where the goal is not to find a global minimum or understand the limiting value of those parameters, but to generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters, and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: **both needed.**

We can look to industry for machine learning innovations, but the best ansatz fitters are in HEP: RooFit, RooStats, GooFit, HistFitter, HistFactory, pyhf. . .

What they've got

- 1. Distributed DAG processing
- 2. Indexed analysis
- 3. Machine learning

What we'd need

- 1. Nested data structures
- 2. Advanced histogramming
- 3. Ansatz fitting

What they've got

- 1. Distributed DAG processing
- 2. Indexed analysis
- 3. Machine learning

What we'd need

- 1. Nested data structures
- 2. Advanced histogramming
- 3. Ansatz fitting

Nearly all ML techniques require flattened or sequences of flattened data, but we have real problems that need nested data: e.g. classifying N_i jets per event (nested, unordered sets). RNNs and LSTMs (for non-nested, ordered sequences) are designed for a different data type!

What they've got

- 1. Distributed DAG processing
- 2. Indexed analysis
- 3. Machine learning

What we'd need

- 1. Nested data structures
- 2. Advanced histogramming
- 3. Ansatz fitting

F.A.S.T. and histbook are incorporating Pandas indexing into advanced histogramming.

What they've got

- 1. Distributed DAG processing
- 2. Indexed analysis
- 3. Machine learning

What we'd need

- 1. Nested data structures
- 2. Advanced histogramming
- 3. Ansatz fitting

As fits get bigger, they may need to be distributed, for instance with iterative map-reduce.

Data analysis tools outside of HEP are mature but not a perfect fit to our needs.

- ▶ Some of what we need is available now: can we use it?
- ▶ Some exists only as HEP software: can it interoperate?
- Some of what's available is unlike anything we do now: an opportunity to do better physics?

Data analysis tools outside of HEP are mature but not a perfect fit to our needs.

- ▶ Some of what we need is available now: can we use it?
- Some exists only as HEP software: can it interoperate?
- ► Some of what's available is unlike anything we do now: an opportunity to do better physics?
- ▶ The door swings both ways: we have things to teach the world!