@ | PRINCETON H
UNIVERSITY ®dlana

Data analysis tools from within HEP and from industry

Jim Pivarski

Princeton University — DIANA-HEP

July 12, 2018

5 &S

I'm going to start with a dumb comparison, to make a point.

We measure globally distributed data in hundreds of PB

CERN community

~ CERN Data Centre basses the
200-petabyte mllestone

2 by Meélissa Gaillard

CERN's Data Centre (Image: Robert HradiL, Monika Majer

T

But for “web scale” companies, 100 PB = 1 truck @

About CERN Students & Educators Scientists CERN community English |~ Francais

Experiments Physics Computing Engineering g Updates Opinion

CERN Data Centre passes the T o

« - 200-petabyte milestone -

.. by Mélissa Gaillard

- &% AWS Snowmobile: 100PB Container - 1 F

I | ./

45-foot long Connect to your Fill 'er Up! Transports Data-
rugged i d. with To AWS ,l ,
& truck fiber cable

CERN's Data Centre (Image: Robert Hradil, Mo}

HEP is no longer the main developer or user in this problem space.

The point?

HEP is no longer the main developer or user in this problem space.

A better metric, which unfortunately | can't quantify:
» x FTEs in HEP developing open source analysis tools

» y FTEs outside of HEP developing open source analysis tools
(not sure of x and y, but x < y)

The point?

HEP is no longer the main developer or user in this problem space.

A better metric, which unfortunately | can't quantify:
» x FTEs in HEP developing open source analysis tools

» y FTEs outside of HEP developing open source analysis tools
(not sure of x and y, but x < y)

— There's a lot of good data analysis software out there!

The point?

HEP is no longer the main developer or user in this problem space.

A better metric, which unfortunately | can't quantify:
» x FTEs in HEP developing open source analysis tools

» y FTEs outside of HEP developing open source analysis tools
(not sure of x and y, but x < y)

— There's a lot of good data analysis software out there!
— Could adopting it reduce in-house maintenance burdens?

The point?

HEP is no longer the main developer or user in this problem space.

A better metric, which unfortunately | can't quantify:
» x FTEs in HEP developing open source analysis tools

» y FTEs outside of HEP developing open source analysis tools
(not sure of x and y, but x < y)

— There's a lot of good data analysis software out there!
— Could adopting it reduce in-house maintenance burdens?
— More training examples and career options for users?

T

Show of hands: are you currently using data
analysis software created outside of HEP?

T

Show of hands: are you currently using data
analysis software created outside of HEP?

Are you planning to or want to?

On the other hand. ..

Another important metric: experience!

» High-energy physicists have been performing big data analytics
(i.e. reducing large datasets to statistical inferences with
computers) for about 50 years.

Another important metric: experience!

» High-energy physicists have been performing big data analytics
(i.e. reducing large datasets to statistical inferences with
computers) for about 50 years.

» Web-scale companies have been doing it for about 10 years.

Another important metric: experience!

» High-energy physicists have been performing big data analytics
(i.e. reducing large datasets to statistical inferences with
computers) for about 50 years.

» Web-scale companies have been doing it for about 10 years.

HEP analyses have grown sophisticated— there are certain things
we expect but don't find in industry-grade software.

Another important metric: experience!

» High-energy physicists have been performing big data analytics
(i.e. reducing large datasets to statistical inferences with
computers) for about 50 years.

» Web-scale companies have been doing it for about 10 years.

HEP analyses have grown sophisticated— there are certain things
we expect but don't find in industry-grade software.

The simple prescription of “just use Spark” would leave analyzers

without some necessary tools.

Option #1

All of our needs are
specialized.

Continue developing
our own everything.

33

Option #1

All of our needs are
specialized.

Continue developing
our own everything.

Option #2

Modern big data
software has some
good ideas;
integrate those

ideas into our stack.

33

Option #1

All of our needs are
specialized.

Continue developing
our own everything.

Option #2

Modern big data
software has some
good ideas;
integrate those
ideas into our stack.

Option #3

Narrow our scope to
HEP-specific tools,
what no one else is
developing, and
make them
interoperate with
non-HEP tools for
the common parts.

Option #1 Option #2 Option #3 Option #4

All of our needs are Modern big data Narrow our scope to Convince the world

specialized. software has some HEP-specific tools, to start using HEP
. . good ideas; what no one else is analysis techniques

Continue developing :)

our own evervthin integrate those developing, and so that they will

YINNE ideas into our stack. make them develop solutions
interoperate with for these, too.

non-HEP tools for
the common parts.

Option #1 Option #2 Option #3 Option #4

All of our needs are Modern big data Narrow our scope to Convince the world

specialized. software has some HEP-specific tools, to start using HEP
. . good ideas; what no one else is analysis techniques

Continue developing :)

our own evervthin integrate those developing, and so that they will

YININE. ideas into our stack. make them develop solutions
interoperate with for these, too.

non-HEP tools for
the common parts.

#3 is my opinion, but it begs the question: what's HEP-specific and what's not?

Three examples each:

What they've got What we'd need
1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming

3. Machine learning 3. Ansatz fitting

Distributed DAG processing

not HEP-specific

10/33

Distributed DAG processing

DAG: Directed Acyclic Graph of dependencies between subtasks.
Some would say this is what big data processing is.

11/33

Distributed DAG processing

DAG: Directed Acyclic Graph of dependencies between subtasks.
Some would say this is what big data processing is.

SO

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Parsl (Python), Storm (continuous),
Thrill (C++), DAGMan (HTCondor), TensorFlow (fitting). ..

11/33

Distributed DAG processing

DAG: Directed Acyclic Graph of dependencies between subtasks.
Some would say this is what big data processing is.

Many frameworks distribute work this way:

Spark (JVM), Dask, Joblib, Parsl (Python), Storm (continuous),
Thrill (C++), DAGMan (HTCondor), TensorFlow (fitting). ..

To use these frameworks, one must
» express user tasks as DAG nodes (e.g. ROOT RDataFrame);

» serialize user functions on the driver and load user data on the
workers in accordance to the framework's way of doing things.

11/33

From “REANA: A System for Reusable Research Data Analyses” @

reana

Reproducible research data analysis platform
. http://www.reana.io/
Example: BSM search

500

‘UU- Baes

g g T

©) https://github. con/reanahub/reana-demo-bsm-search/

Complex computational workflows typical in particle physics analyses.

@tiborsimko 13/18

12/33

From “Interactive, scalable, reproducible data analysis with con. .. @

RICH EXPRESSION OF DEPENDENCIES

fiC.E) fG.H1J

)

f(A. B)
C
f(B)
D f(D)
F

6
f(E)
f(C. D) H

E f(E)
I

f(E)
J

j@

fiH. 1. J)
H

’l
r

http://parsl-project.org

Apps run concurrently,
respecting data
dependencies via futures.
Implicit parallel
programming!

Dynamic: apps can
create apps! Apps can
be recursive!

ANNA WOODARD 6/15

From “GNA: new framework for statistical data analysis”

Computational graph example
The whole JUNO graph

osc flux:
comp13 from group0

» 43 parameters.
» The JUNO graph contains 110 nodes and 174 edges.
» It produces a histogram of 280 bins.

10/15

14/33

5 &S

HEP has adopted the idea of DAGs, but will we be developing our
own DAG-processors or using what we find?

(Can we? Why or why not?)

15/33

Nested data structures

strangely HEP-specific

16 /33

Nested data structures

311 -0.481 0882 976 -0.124 0.924

8.59 -1.754 -0.264 8714 0.185 0.629

8.18 -0.119 0.923

17/33

Nested data structures

8.18 -0.119 0.923

Objects are essential in HEP analysis.

Many physicists consider T Trees with
std: :vector<float> branches to be
“minimal” or “flat.”

mul mut mu2
phi eta P,

311 -0.481 0882 976 -0.124 0.924

8.59 -1.754 -0.264 8714 0.185 0.629

17/33

Nested data structures

-0.119 0.923

8.18

Objects are essential in HEP analysis.

Many physicists consider T Trees with
std: :vector<float> branches to be
“minimal” or “flat.”

mul mut mu2 mu2 mu2
phi eta P, phi eta

311 -0.481 0882 976 -0.124 0.924

8.59 -1.754 -0.264 8714 0.185 0.629

Most data analysis tools have an SQL
mindset, with rectangular data tables.

Objects — rectangular tables is lossy!

Performance claims often start the
stopwatch after this “data cleaning.”

17/33

Nested data structures

Spark/Parquet/Arrow/HDF5/Pandas
has nested objects!

18/33

BE
Nested data structures ' @

Spark/Parquet/Arrow/HDF5/Pandas | | Nested data are in these projects’
has nested objects! scope, but as a second-class citizen.

18/33

Nested data structures @

Spark/Parquet/Arrow/HDF5/Pandas | | Nested data are in these projects’
has nested objects! scope, but as a second-class citizen.

» Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

18/33

Nested data structures @

Spark/Parquet/Arrow/HDF5/Pandas | | Nested data are in these projects’
has nested objects! scope, but as a second-class citizen.

» Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

» Parquet and Arrow specifications define lists of records, but they haven't
been implemented in C++ and therefore Python yet (last time | checked).

18/33

Nested data structures @

Spark/Parquet/Arrow/HDF5/Pandas | | Nested data are in these projects’
has nested objects! scope, but as a second-class citizen.

» Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

» Parquet and Arrow specifications define lists of records, but they haven't
been implemented in C++ and therefore Python yet (last time | checked).

» HDF5 has lists of compounds, but they're rowwise (“unsplit™).

18/33

Nested data structures @

Spark/Parquet/Arrow/HDF5/Pandas | | Nested data are in these projects’
has nested objects! scope, but as a second-class citizen.

» Spark DataFrames allow arrays of structs, but using them involves a
cumbersome explode-groupby or “drop to RDDs,” giving up performance.

» Parquet and Arrow specifications define lists of records, but they haven't
been implemented in C++ and therefore Python yet (last time | checked).

» HDF5 has lists of compounds, but they're rowwise (“unsplit™).

» Pandas can put arbitrary Python objects in DataFrames, but most
operations only apply to numbers.

18/33

Nested data structures

>>> import uproot

>>> t = uproot.open("tests/samples/HZZ.root") ["events"]

>>> t.pandas.df (["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=False)
MET_px Muon_Px Electron_Px

2401 2.998099 [-1.492689 [1

2402 27.944883 [-4.560287 [1

2403 3.787466 [-9.715589 [1

2404 9.378232 [-31.072098 [1

2405 -17.310106 [47.484627, 4.6953125 [1

2406 -81.965927 [74.75617, -20.911081 [1

2407 -9.059591 [25.786427, -29.265024 [1

]

]

]

]

]

]

]
2408 25.649775 0 0 ,
2409 29.691553 (-24.7368) 0 In some cases, maybe we're
2410 -25.754967 [53.005814, -30.208649] [-37.681973, 18.453588] . - .
2411 -2.426847 [55.7203, -26.914448] 1 using the wrong idiom:
2412 -15.611773 [14.896802] 0 . : .
2413 18.921183 [-24.158083] [instead of WOrklng with
2414 -11.730723 [-9.204197] 0
2415 -10.648725 [34.506527, -31.56778] [structured values, Pandas
2416 -14.607650 [-39.285824] 0 .
2417 22.208313 [35.067146] 0 prefers structured indexes.
2418 18.101646 [-29.756786] 0
2419 79.875191 [1.1418698] 0
2420 19.713749 [23.913206] 0

19/33

Nested data structures

>>> import uproot

>>> t = uproot.open("tests/samples/HZZ.root") ["events"]
>>> t.pandas.df (["MET_px", "Muon_Px", "Electron_Px"], entrystart=-20, flatten=True)
MET_px Muon_Px Electron_Px
entry subentry
2401 0 2.998099 -1.492689 NaN
2402 0 27.944883 -4.560287 NaN
2403 0 3.787466 -9.715589 NaN
2404 0 9.378232 -31.072098 NaN
2405 0 -17.310106 47.484627 NaN
1 NaN 4.695312 NaN
2406 0 -81.965927 74.756172 NaN '
1 NaN —20.611081 N In some cases, maybe we're
2407 0 -9.059591 25.786427 NaN . T i
1 NaN -29.265024 NaN using the wrong idiom:
2408 0 25.649775 NaN NaN . . .
2409 0 29.691553 -24.736799 NaN instead of Worklng with
2410 0 -25.754967 53.005814 -37.681973
1 NaN -30.208649 18.453588 structured values, Pandas
2411 0 -2.426847 55.720299 NaN .
1 NaN —26.914448 Naw prefers structured indexes.
2412 0 -15.611773 14.896802 NaN
2413 0 18.921183 -24.158083 NaN
2414 0 -11.730723 -9.204197 NaN
2415 0 -10.648725 34.506527 NaN
1 NaN -31.567780 NaN
2416 0 -14.607650 -39.285824 NaN
2417 0 22.208313 35.067146 NaN
2418 0 18.101646 -29.756786 NaN
2419 0 79.875191 1.141870 NaN
2420 0 19.713749 23.913206 NaN 19/33

BE
Nested data structures ' @

But that shouldn't be the only way: we should be able to use our data models
and algorithms, even if we run them in non-HEP frameworks.

20/33

Nested data structures

But that shouldn't be the only way: we should be able to use our data models
and algorithms, even if we run them in non-HEP frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model Numpy-like broadcasting

@numba. jit # LLVM-compiled Python

def deltaphi (event): # one per event one per particle
metphi = event.MET.phi event ["MET"] ["phi"] — event["jet"]["phi"]

for jet in event. jets:
yield metphi - jet.phi

20/33

BE
Nested data structures ' @

But that shouldn't be the only way: we should be able to use our data models
and algorithms, even if we run them in non-HEP frameworks.

This is my main project now: fast manipulation of columnar data.

General programming model Numpy-like broadcasting

@numba. jit # LLVM-compiled Python

def deltaphi (event) : # one per event one per particle
metphi = event.MET.phi event ["MET"] ["phi"] — event["jet"]["phi"]

for jet in event. jets:
yield metphi - jet.phi

Also, this should be of wider interest than HEP: developers of Arrow, Dask, and
XND (~Numpy 2.0) are curious about it.

20/33

FORTRAN C++ Nested Data Structures

in HEP
Objectivity
(c.1994-2004)
ProtoBuf Avro
(2001) (2009) Arrow
C-Store (2016)
(2005) Pgrﬁuet
MonetDB e
2002 Dremel
(2002) (2010)
L L L I L L L L I L 1 1 1 I >

2000 2010 2020

21/33

Missed opportunity

FORTRAN C++ Nested Data Structures

in HEP
(1995) >
Objectivity
(c.1994-2004)
ProtoBuf Avio
(2001) (2009) Arrow
C-Store (2016)
s e
MonetDB D (I)
(2002) reme
(2010)
1 1 1 I 1 1 1 1 I 1 1 1 1 I :
1970 1980 1990 2000 2010 2020

storage and reduce CPU cost due to cheaper compression. Column
stores have been adopted for analyzing relational data [1] but to the
best of our knowledge have not been extended to nested data mod-
els. The columnar storage format that we present is supported by

Google Dremel paper (2010):

(inspired Parquet)

21/33

Indexed analysis

not well-known in HEP

22 /33

Indexed analysis

To understand what | mean by “indexed analysis,” consider
analysis with less advanced indexing than modern HEP.

23/33

Indexed analysis

h/cr/1d 201 ’'dOmiss’ 100 -0.5e-3 0.5e-3
h/cr/1d 202 ’zOmiss’ 100 -0.015 0.015
h/cr/1d 203 ’'pxmiss’ 100 -0.076 0.076

h/cr/1d 204 'pymiss’ 100 -0.076 0.076 To the left is a PAW script (pre—ROOT),
h/cr/1d 205 'pzmiss’ 100 -0.076 0.076 . S—_—

nt/plot 2.d0 ! ! 1 1 1 201 creating and filling histograms.

nt/plot 2.z0 ! ! ! 1 I 202

nt/plot 2.px ! ! ! ! 1 203

nt/plot 2.py ! ! ! ! 1| 204

nt/plot 2.pz ! ! ! I | 205

Histograms were indexed by numbers
h/cr/1d 301 'normalized dOmiss’ 100 -10 10

- 1
h/cr/1d 302 'normalized zOmiss’ 100 -10 10 because they didn't have names back then.
h/cr/1d 303 ’'normalized pxmiss’ 100 -10 10
h/cr/1d 304 'normalized pymiss’ 100 -10 10
h/cr/1d 305 ’'normalized pzmiss’ 100 -10 10

nt/plot 2.d0/sqgrt(ed0) ! ! ! ! 1 301
nt/plot 2.z0/sgrt(ez0) ! ! ! ! ! 302
nt/plot 2.px/sqrt(epx) ! ! ! ! 1 303
nt/plot 2.py/sgrt(epy) ! ! ! ! ! 304
nt/plot 2.pz/sgrt(epz) ! ! ! ! ! 305

h/cr/1d 401 'dOmiss after constraint’ 100 -0.le-16 0.le-16
h/cr/1d 402 'zOmiss after constraint’ 100 -0.le-15 0.le-15
h/cr/1d 403 'pxmiss after constraint’ 100 -0.01 0.01
h/cr/1d 404 'pymiss after constraint’ 100 -0.01 0.01
h/cr/1d 405 'pzmiss after constraint’ 100 -0.01 0.01

nt/plot 2.ad0 ! ! ! ! ! 401
nt/plot 2.az0 ! ! ! ! | 402
nt/plot 2.apx ! ! ! ! ! 403
nt/plot 2.apy ! ! ! ! ! 404
nt/plot 2.apz ! ! ! ! ! 405 24 /33

Indexed analysis

h/cr/1d 201 ’'dOmiss’ 100 -0.5e-3 0.5e-3
h/cr/1d 202 ’zOmiss’ 100 -0.015 0.015
h/cr/1d 203 ’'pxmiss’ 100 -0.076 0.076

h/cr/1d 204 'pymiss’ 100 -0.076 0.076 To the left is a PAW script (pre—ROOT),
h/cr/1d 205 'pzmiss’ 100 -0.076 0.076 . S—_— .

nt/plot 2.d0 ! ! 1 1 1 201 creating and filling histograms.

nt/plot 2.z0 ! ! ! 1 I 202

nt/plot 2.px ! ! ! ! 1 203

nt/plot 2.py ! ! ! ! 1| 204

nt/plot 2.pz ! ! ! I | 205

Histograms were indexed by numbers
h/cr/1d 301 'normalized dOmiss’ 100 -10 10

- 1
h/cr/1d 302 'normalized zOmiss’ 100 -10 10 because they didn't have names back then.
h/cr/1d 303 ’'normalized pxmiss’ 100 -10 10
h/cr/1d 304 'normalized pymiss’ 100 -10 10
h/cr/1d 305 ’'normalized pzmiss’ 100 -10 10

t/plot 2.d0/ t(ed0) ! ! 1 1 1 301 age

N/olot 2,207 eart (oz0) 1 1 1 1 1 302 The ability to name stuff was as
t/plot 2. / t(y Loror o1 303 .

e oot 2. onreert (oomy 11 1 1 1 304 fundamental to HEP data analysis as
nt/plot 2.pz/sqgrt(epz) ! ! ! ! 1 305

handwashing was to medical science!

h/cr/1d 401 'dOmiss after constraint’ 100 -0.le-16 0.le-16
h/cr/1d 402 'zOmiss after constraint’ 100 -0.le-15 0.le-15
h/cr/1d 403 'pxmiss after constraint’ 100 -0.01 0.01
h/cr/1d 404 'pymiss after constraint’ 100 -0.01 0.01
h/cr/1d 405 'pzmiss after constraint’ 100 -0.01 0.01

nt/plot 2.ad0 ! ! ! ! ! 401
nt/plot 2.az0 ! ! ! ! | 402
nt/plot 2.apx ! ! ! ! ! 403
nt/plot 2.apy ! ! ! ! ! 404
nt/plot 2.apz ! ! ! ! ! 405 24 /33

Indexed analysis

h/cr/1d 201 ’'dOmiss’ 100 -0.5e-3 0.5e-3
h/cr/1d 202 ’zOmiss’ 100 -0.015 0.015
h/cr/1d 203 ’'pxmiss’ 100 -0.076 0.076

h/cr/1d 204 'pymiss’ 100 -0.076 0.076 To the left is a PAW script (pre—ROOT),
h/cr/1d 205 'pzmiss’ 100 -0.076 0.076 . S—_— .

nt/plot 2.d0 ! ! 1 1 1 201 creating and filling histograms.

nt/plot 2.z0 ! ! ! 1 I 202

nt/plot 2.px ! ! ! ! 1 203

nt/plot 2.py ! ! ! ! 1| 204

nt/plot 2.pz ! ! ! I | 205

Histograms were indexed by numbers
h/cr/1d 301 'normalized dOmiss’ 100 -10 10

- 1
h/cr/1d 302 'normalized zOmiss’ 100 -10 10 because they didn't have names back then.
h/cr/1d 303 ’'normalized pxmiss’ 100 -10 10
h/cr/1d 304 'normalized pymiss’ 100 -10 10
h/cr/1d 305 ’'normalized pzmiss’ 100 -10 10

t/plot 2.d0/ t(ed0) ! ! 1 1 1 301 age

N/olot 2,207 eart (oz0) 1 1 1 1 1 302 The ability to name stuff was as
t/plot 2. / t(y Loror o1 303 .

e oot 2. onreert (oomy 11 1 1 1 304 fundamental to HEP data analysis as
nt/plot 2.pz/sgrt(epz) ! ! ! ! ! 305

handwashing was to medical science!
h/cr/1d 401 'dOmiss after constraint’ 100 -0.le-16 0.le-16

h/cr/1d 402 'zOmiss after constraint’ 100 -0.le-15 0.le-15

h/cr/1d 403 'pxmiss after constraint’ 100 -0.01 0.01

h/cr/1d 404 'pymiss after constraint’ 100 -0.01 0.01 ' ’
h/cr/1d 405 'pzmiss after constraint’ 100 -0.01 0.01 BUt we don t haVe to Stop there' There S
nt/plot 2.ad0 ! ! ! ! ! 401 H H H

e blot 2.a20 1 1 11 1 402 more to indexing than name-value pairs.
nt/plot 2.apx ! ! ! ! ! 403

nt/plot 2.apy ! ! ! ! ! 404

nt/plot 2.apz ! ! ! ! | 405 24/33

From “Pandas DataFrames for F.A.S.T. binned analysis at CMS" w @

component depth

class

single_top

LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr

ev:len(evMuon_lso_ldx) >=2
ev: evriggerisoMu24[0]
ev:evMuon_P(0]>25
ev:len(evMuon_lso_ldx) >=2
ev: eviriggerlsoMu24[0]
ev:evMuon_P(0]>25
ev:len(evMuon_lso_ldx) >= 2
ev: ev.riggerisoMu24[0]
ev:evMuon_P(0]>25
ev:len(evMuon_lso_ldx) >= 2
ev: eviriggerlsoMu24[0]
ev:evMuon_P(0]>25
ev:len(ey

evi

16208
16208
15995
37559
37569
37263

469384
16208
16208
77729
37559
37559

« component depth

Selection:

class

Selection:
All:

- len(ev.Muon_Iso_Idx)
- ev.triggerIsoMu24[0]
- ev.Muon_Pt[0] > 25

Example Cut-flow
Dataframe

evtlen(ey
data
ovi
o
ev:len(e
ovd
B
ev:len(es
ovd

o

ev:len(ey
ev:ev.triggerlsoMu24{0]
ev:evMuon_P{0]>25

ernch

1235
1232

1

LambdaStr
LambdaStr
LambdaStr
LambdaStr
LambdaStr

LambdaStr

ev:len(ev.Muon_lso_ldx) >=2
ev: ev.triggerlsoMu24[0]
ev:ev.Muon_Pt[0] > 25
ev:len(ev.Muon_lso_ldx) >=2
ev: ev.triggerlsoMu24[0]
ev:ev.Muon_P{[0] > 25

FAST: Pan

16208
16208
15995
37559
37559
37263

469384
16208
16208
77729
37559
37559

sed binned

Pandas
DataFrames
filled by
AlphaTwirl,
analyzed by
F.AS.T.

25/33

From “Pandas DataFrames for F.A.S.T. binned analysis at CMS" w @

Pandas
Manipulating DFs: Long to wide form DataFrames
Cnar vrinee -t filled by

df["err"] = np.sqrt(df.nvar)

Switch to long-form AIphaTW|r|,
df2 df.pivot table(index="dimu mass" component", values=["n", "err"])
analyzed by

df2 = df2.sort_index(axis=1,
a2t rqca, *single.top'] F.AST.

Sort components to match tutorial
order = ["data", "ttbar", "wjets", "dy", us
df2 = df2.reindex(order, axis=1, level="component")

Show first 10 rows
df2.head(10)

n err
component data ttbar wiets dy single_top data ttbar wjets
dimu_mass
-inf 9930 11.392980 0311917 655570771 3600221 0320914 0.360053 1.741041 31511903 1.752727 0311917

60.000000 380 0840432 0.000000 23.963227 0.063284 0.053328 0.000000 0.065288 6.164414 0.486302 0.000000

61.000000 250 0319709 25572841 0.102053 0.000000 NaN 0.005831 5000000 0.275655

62.000000 220 0274432 20271624 0.068484 0.038697 NaN 0.000000 4690416 0.274432

63.000000 280 0.000000 22.941727 0.194258 0.000000 0.009475 NaN 5291503 0.000000

64.000000 290 0847224 20534599 0.065338 0.081642 0.009540 NaN 5385165 0.490427

65.000000 17.0 0352667 20464412 0.130224 0000000 0.004153 ~ 0.093700 4.123106 0.282423

66.000000 37.0 0570011 27.861013 0.128668 0.059988 0.015375 0.000000 6.082763 0403615

67.000000 340 0817704 34173523 0.063818 0000000 0.017707 0.000652 5830952 0.475827

68.000000 31.0 0753107 26971645 0.024008 0.042326 0.000000 0.000000 5567764 0.440761

Depending on task, ‘wide-form” tables can be easier
to work with

8, b.krikler@cern.ch

FAST: Pan based binned analysis 25 /33

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =

>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

split ("mt1", [0.2, 0.5]1), split("mt2", [0.2, 0.5]), fill=df)

>>> multihist.pandas ()
count () err (count ())

mass gqlxg2 < 0 mtl
[-inf, 0.0) fail [-inf, 0.2)

[0.2, 0.5)

m
[

[

[

[

[

[
[0.5, inf) [
[

[
pass [-inf, 0.2) [
[

[

[

[

[

[

D OO0 000000000000 OO
D OO0 000000000000 OO
D OO0 0000000000000
OO0 0000000000000 O

[0.5, inf) 26 /33

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us

project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =

>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

A split ("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.step("mass")

120

100

80

60

count

40

20

0
0 100 200 300 400 500

26 /33

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =

>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

split ("mt1", [0.2, 0.5]1), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.overlay ("glxg2 < 0").step("mass")

al*a2 <0

O fail
O pass

count

26 /33

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =

>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

split ("mt1", [0.2, 0.5]1), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.stack ("glxg2 < 0").area("mass")

al*q2 <0

® fail
® pass

stacked count

26 /33

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =

>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

split ("mt1", [0.2, 0.5]1), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.beside ("glxg2 < 0").step("mass")

q1*q2 < 0
fail pass

a0
20
ol

0 100 200 300 400500 O 100 200 300 400 500
mass mass

count

26 /33

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =
>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

split ("mt1", [0.2, 0.5]), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below ("mt1") .beside ("mt2") .step ("mass")

mt2
[-inf, 0.2) [0.2,0.5) (0.5, inf)

60
50
40
30
20
" I M“_A
0

1 ey 26/33

[-inf, 0.2)
count

mtl
[0.2,0.5)
count

Indexed analysis

| had the same thought: our primary examples of indexable data are histograms
and systems of related histograms. Rich indexing would let us
project/rebin/cut/transform histograms more fluidly.

>>> from histbook import =
>>> multihist = Hist (bin("mass", 100, 0, 500), cut("gl*xg2 < 0"),

split ("mt1", [0.2, 0.5]1), split("mt2", [0.2, 0.5]), fill=df)
>>> multihist.below("mt1") .beside ("mt2") .overlay ("glxg2 < 0").step("mass")

mt2
[-inf, 0.2) [0.2,055) (0.5, inf)

ql*q2 <0
O fail

1|
W

[-inf, 0.2)
count

mtl
[0.2,0.5)
count

4“1; 1 26 /33

Using tools with rich indexing systemizes what we're already doing
with naming conventions, splitting names on underscores, etc.

Pandas is not a TTree replacement— if anything,
it's a histogram organizer!

27 /33

Advanced histogramming

very HEP-specific

28 /33

Advanced histogramming @

The histograms themselves, however, are more sophisticated in
HEP than elsewhere.

29 /33

Advanced histogramming @

The histograms themselves, however, are more sophisticated in
HEP than elsewhere.

» As far as | have found, M HEP histogramming tools (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of
histograms as containers to be filled, merged, and accessed programmatically.

29 /33

Advanced histogramming @

The histograms themselves, however, are more sophisticated in
HEP than elsewhere.

» As far as | have found, M HEP histogramming tools (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of
histograms as containers to be filled, merged, and accessed programmatically.

» In many non-HEP packages, “histogram” is more of a display option than an
analysis tool, with no way to access contents or control binning.

29 /33

Advanced histogramming @

The histograms themselves, however, are more sophisticated in
HEP than elsewhere.

» As far as | have found, M HEP histogramming tools (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of
histograms as containers to be filled, merged, and accessed programmatically.

» In many non-HEP packages, “histogram” is more of a display option than an
analysis tool, with no way to access contents or control binning.

» “Profile” plots are only in HEP. Robust log scales are hard to find, too.

29 /33

Advanced histogramming @

The histograms themselves, however, are more sophisticated in
HEP than elsewhere.

» As far as | have found, M HEP histogramming tools (ROOT, YODA,
go-hep/hbook, AIDA, HippoDraw, Jas3, mn_fit, PAW, HBOOK) conceive of
histograms as containers to be filled, merged, and accessed programmatically.

» In many non-HEP packages, “histogram” is more of a display option than an
analysis tool, with no way to access contents or control binning.

» “Profile” plots are only in HEP. Robust log scales are hard to find, too.

These features aren't difficult, but they're our responsibility.

29 /33

Machine learning versus ansatz fitting

30/33

Machine learning versus ansatz fitting

My take on machine learning: it's fitting.

31/33

- - .]
Machine learning versus ansatz fitting ' @

My take on machine learning: it's fitting.
It's fitting with thousands of free parameters, where the goal is not to find a

global minimum or understand the limiting value of those parameters, but to
generate, recognize, or classify patterns.

31/33

- - .]
Machine learning versus ansatz fitting ' @

My take on machine learning: it's fitting.
It's fitting with thousands of free parameters, where the goal is not to find a
global minimum or understand the limiting value of those parameters, but to

generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters,
and the exact shape of the minimum has implications for the theory.

31/33

- - .]
Machine learning versus ansatz fitting ' @

My take on machine learning: it's fitting.
It's fitting with thousands of free parameters, where the goal is not to find a
global minimum or understand the limiting value of those parameters, but to

generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters,
and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: both needed.

31/33

; - SO L]
Machine learning versus ansatz fitting @

My take on machine learning: it's fitting.

It's fitting with thousands of free parameters, where the goal is not to find a
global minimum or understand the limiting value of those parameters, but to
generate, recognize, or classify patterns.

Ansatz fitting, however, optimizes a theory-driven function of few parameters,
and the exact shape of the minimum has implications for the theory.

Qualitatively different purposes: both needed.

We can look to industry for machine learning innovations, but the best ansatz
fitters are in HEP: RooFit, RooStats, GooFit, HistFitter, HistFactory, pyhf. ..

31/33

Areas of overlap

What they've got What we'd need
1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming

3. Machine learning 3. Ansatz fitting

32/33

Areas of overlap @

What they've got What we'd need
1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming
3. Machine learning 3. Ansatz fitting

Nearly all ML techniques require flattened or sequences of flattened data,
but we have real problems that need nested data: e.g. classifying N; jets per event
(nested, unordered sets). RNNs and LSTMs (for non-nested, ordered sequences)
are designed for a different data type!

32/33

Areas of overlap

What they've got What we'd need

1. Distributed DAG processing 1. Nested data structures

2. Indexed analysis 2. Advanced histogramming
3. Machine learning 3. Ansatz fitting

F.A.S.T. and histbook are incorporating Pandas indexing into advanced
histogramming.

32/33

Areas of overlap

What they've got What we'd need

1. Distributed DAG processing 1. Nested data structures
2. Indexed analysis 2. Advanced histogramming
3. Machine learning 3. Ansatz fitting

As fits get bigger, they may need to be distributed, for instance with
iterative map-reduce.

32/33

Data analysis tools outside of HEP are mature but not a perfect fit
to our needs.

» Some of what we need is available now: can we use it?
» Some exists only as HEP software: can it interoperate?

» Some of what's available is unlike anything we do now:
an opportunity to do better physics?

33/33

Data analysis tools outside of HEP are mature but not a perfect fit
to our needs.

» Some of what we need is available now: can we use it?
» Some exists only as HEP software: can it interoperate?

» Some of what's available is unlike anything we do now:
an opportunity to do better physics?

» The door swings both ways: we have things to teach the world!

33/33

