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Introduction:  detectors and upgrade plans

Upgrades of the Inner tracker, calorimeters and muon system planned by both detectors
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ATLAS%detectorCMS%detector
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Introduction:  current LHC and detectors operations

• Total of Run 2 already recorded luminosity: ~117 fb-1 per experiment, ATLAS and CMS
– Aimed total Run 2 luminosity: ~150 fb-1 per experiment

• Thanks to the excellent performance of LHC:
– Exceeded the design luminosity of 1034 cm-2 s-1 in 2017 and reached 2 x 1034 cm-2s-1 peak luminosity in May 2018

• Events with >60 interactions per bunch crossing (BC) were recorded in 2018 and some events with ~80 in 2017
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HL-LHC upgrade plan overview

• Possible LHC scenarios:
– Baseline scenario:     5.0 x 1034 cm-2s-1 peak luminosity and ~3 ab-1 integrated after ~10 years
– Ultimate scenario:     7.5 x 1034 cm-2s-1 peak luminosity and ~4 ab-1 integrated after ~10 years
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Civil%engineering%work%just%started.%Ground5breaking%ceremony%held%15th June%2018%at%CERN



Trigger and DAQ challenges in Phase-II

• High Luminosity consequences
– High pile-up (up to 200 events/BC) with large number 

of tracks
– Harsher radiation environment
– High granularity detectors that need to be read out
– Larger event size

• Requirements for Trigger and DAQ for CMS–ATLAS :
– L1 latency increases to ~10–12.5μs (~2.5–3.2μs today)
– Readout rate increases to 750–1000 kHz  (100 kHz 

today)
– Overall throughput to ~50 Tb/s  (~2 Tb/s today)
– Rate to permanent storage to ~7.5–10 kHz (~1 kHz 

today)
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HL-LHC upgrade:  physics motivation

• Challenging and broad High-Luminosity LHC programme:
– Precision measurements of the Higgs boson properties
– Precision Standard Model measurements
– Searches for Beyond-the-Standard-Model signatures
– Flavour and Heavy-ion physics
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• Requires keeping the pT of the various trigger 
objects as low as possible

– Electroweak scale requires low pT leptons
– Searches for new physics with e.g. low Δm too
– HH measurements requires low pT jets /b-jets

Various(physics(signals(acceptance(versus(lepton(pTExpected(#(events(with(3(ab;1 (ECFA(2013)
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ATLAS and CMS upgrades architecture

• Two-level trigger architecture designed 
for both ATLAS and CMS:

– First trigger level name differs: 
• L0 (ATLAS) and L1 (CMS)

– Tracking data is used at L1 in CMS and 
at HLT in ATLAS in customised 
hardware

• ATLAS:
– L0 latency/rate:     <10 μs   1 MHz
– HLT output rate:    10 kHz
– Considers an evolution system with    

L0/L1 (w/ 400 kHz output rate) and HLT 

• CMS:
– L1 latency/rate:    <12.5 μs  <750 kHz
– HLT output rate:    7.5 kHz 
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ATLAS Level-0 architecture
• L0Calo (5 ATCA shelves):

– New in Phase-I and baseline 
for Phase-II

– New forward-FEX (fFEX) in 
Phase-II for fwd EM and jets

• L0Muon (15 ATCA shelves):
– New electronics and readout 

chain, new firmware
– Use data from MDT, New 

Small Wheel (extend |η|<2.6) 

• Central Trigger (1+1 shelves):
– New Central Trigger 

Processor (CTP)
– New MUon-to-CTP-Interface 

(MUCTPI)

• L1 latency  (<10 μs):
– 6.9 μs best estimate
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ATLAS Global Trigger description
• Time-multiplexed system concentrating data of full event into a single processor at 40 MHz

– Input:  >2300 optical fibres with different link speeds/protocols
– Three steps:  data aggregation layer (MUX) time-multiplexing, event processor layer (GEP), final 

demultiplexing Global to CTP interface

• ATCA-based Global Common Module
– Common Module for MUX and GEP that differ in firmware
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CMS Level-1 architecture
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• Muon track finder
– Use of additional chambers 
– Potential use of Kalman Filter

• High Granularity Calorimeter 
Trigger Primitive Generator

– Use ~900k channels in the 
trigger (out of 6M) 

• Track Finder Trigger Primitive 
Generator (TPG)

– Use the outer layers

• Correlator trigger
– Combines objects to build high-

level trigger objects and particle-
flow identification

• Latency target for front-ends to 
receive the L1A signal:  9.5 μs

Tracks&available

“Particle&Flow&reconstruction&in&the&Level?1”,&G.&Petrucciani
“Overview&of&the&CMS&L1?trigger&for&HL?LHC”,&R.&Cavanaugh

trigger&cells



CMS tracker data in L1:  motivation
• Tracker data is used at L1 in CMS

– Essential as the rate without tracking is ~4 MHz with 200 pile-up events
– Allows vertexing at L1  (good performance observed of algorithm in FPGA)
– Object pT thresholds can be maintained similar to thresholds used in Run 1
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Trigger&rate&versus&muon&pTHard&interaction&primary&vertex&reco.&eff.&within&1.5&mm

trks&pT >&3&GeV
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CMS L1 tracking description
• Tracker provides limited hit data at full 40 MHz rate

– No use of inner pixel tracker hits (Inner tracker)
– Only hits from outer 6 tracking layers used (Outer 

tracker)

• pT calculation provided by using special pT modules
– Inspection of pairs of closely spaced silicon sensors, 

separated O(1.6-4) mm, to see if signals are 
consistent with the passage of a high pT particle

– Only for compatible hit pairs with pT>2-3 GeV the 
so-called “stubs” are generated

– Factor ~10 data reduction achieved

• Significant data rate:
– Average 15000 stubs/25 ns sent from detector to 

Track Finder (trk. reco. & fit) located underground
– Total bandwidth O(20) TB/s 

• Track finding from stubs must be performed in ~4 μs
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CMS L1 track finder architecture
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• Outer Tracker cabled into nine regions
– Use of time-multiplexing to parallelise data processing
– Time-multiplexing directs data from multiple sources to a 

single processing node

• Data processing in two stages
– DAQ, Trigger and Control layer (DTC)

• Stub pre-processing 
• Time-multiplexing into a single processing node
• Size: 216 DTC boards (~600 Gb/s) in 18 ATCA shelves

– Track Finding Processing layer (TFP)
• Operates on an independent η,φ region
• Track finding from stubs, fitting and transmission of tracks    

to the L1 Correlator Trigger
• Size: 144 TF boards (~1 Tb/s), 12-18 ATCA shelves

• System implemented in ATCA-based boards with FPGAs

Time%multiplexing-concept

Two-step-data-processing



ATLAS tracker data in EF:  motivation
• Motivation for the ATLAS Tracker usage in the EF

– The trigger objects pT thresholds need to be low
– A way to reduce the data rate a factor of 10 from 1 MHz 

• Unrealistic solutions
– CPU time for software-based track reconstruction scales 

geometrically with pile-up (~30k dual-socket servers estimate)
– Using the Run 3 Fast TracKer (FTK) hardware does not scale 

at HL-LHC
• A factor of 20 input bandwidth increase with respect to 

FTK is required

• Current plan
– Designed a new custom hardware-based track finding co-

processor known as the Hardware Tracking for Trigger (HTT)
• Allows pT threshold to be reduced from 10 to 2 GeV
• Factor 10 reduction in CPU power required in the HLT 

farm (from 30k to 3k dual-socket servers) 
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Two-step ATLAS tracking in HTT
• Regional HTT

– Level-0 information provides trigger path and 
Regions of Interest

– Partial tracker event data pulled from storage 
(~10% on average)

• Used hits from 8 outermost trk layers only
• Tracks of pT > 2 GeV sent back to EF

– EF Processing Units (EFPU) makes use of rHTT 
tracks and helps to reduce rate to 400 kHz

• Global HTT
– If required, full hit data (strip and pixel) pulled 

from storage 
– Full tracking (pT > 1 GeV) performed by HTT
– EFPU uses gHTT tracks, in combination with 

offline-like analysis
• Helps reduce rate to the required 10 kHz
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HTT hardware description
• ATCA-based system w/ 672 tracking processors (TP), 

each handling a smallη-φ region, in 56 ATCA shelves

• Single base card differentiated by mezzanines implement 
the 1st and 2nd stage processors (~300 W)

– regional HTT– AMTP boards  (6 AMTP / HTT unit)
• Uses Associative Memories (AMs) to match roads from 

clusters in up to 8 layers
• Hit clustering and data organization
• Track Fitting on roads performed in an FPGA
• Pattern Recognition Mezzanines (PRM)

– global HTT – SSTP board  (1 SSTP/ HTT unit)
• Second Stage (SS) TP receives 1st stage tracks/clusters 

from AMTPs, plus full event data from HTTIF
• Hit clustering in new layers
• Track extrapolation and re-fitting performed in FPGAs
• Track Fitting Mezzanines (TFM)
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CMS DAQ system architecture
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ATLAS DAQ system overview
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CMS and ATLAS detector interface and readout
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Common%firmware%blocks%

in%detector3specific%BE

CMS%detector%interface

• CMS
– ATCA-based with detector-specific Back-

End boards embedding DAQ firmware for 
data transmission via front panel

• Deal with DAQ and timing hub
– Data sent to surface over reliable protocol 

(e.g TCPIP) to I/O processors

• ATLAS
– PCIe-based FELIX cards hosted in servers: 

• Custom Front-End LInk eXchange (FELIX), the 
new interface to detector-specific electronics 
including limited detector-specific firmware

– Data Handler servers running a software application 
that deals with event fragments and embeds 
detector-specific software

Different%protocols%
supported

Hooks%for%
detector3specific
software

ATLAS%detector%interface

Hooks%for%
detector3specific
firmware

“FELIX:%the%new%detector%interface%for%the%ATLAS%experiment”,%S.%Kolos



ATLAS Dataflow system
• Functionality description

– Buffers data before, during and after the Event Filter decision
– Provides partial and full event access as needed and transfers 

data to permanent storage
– Managed by commodity software

• Main components
– Storage Handler 

• High throughput (7.8 TB/s) large storage system (up to 36 
PB) buffering event data before and during EF processing

– Event Builder
• Logical interface of the dataflow to Data Handlers and 

Event Filter
• Manages consistency of distributed data and data access

– Event Aggregator
• Receives full events at 10 kHz, buffers them for up to 48h 

(10 TB) and throughputs to permanent storage at 60 GB/s
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ATLAS and CMS event building and storage
• ATLAS

– 100 Gb/s interconnects (e.g Ethernet) as baseline
– Data injected directly from the readout into storage elements
– Introduction of logical event building, i.e. data fragments temporarily stored in large distributed high 

performance storage (~1h)
• The Event Builder is the book-keeper of the locations of event fragments in the storage system

• CMS
– 200 Gb/s interconnects (e.g. Infiniband HDR) as baseline
– I/O servers (~500) receiving data from readout (TCP) acting both as event building sources and destinations
– Complete events temporarily stored (~5 PB) in high-speed storage to serve HLT (~1 min)

• Permanent storage:  ATLAS and CMS have modular, scalable systems based on Hard Disk drives to 
aggregate accepted events into files and transfer them to Tier0

– ATLAS foresees to use the same distributed storage system used for temporary buffering before HLT while 
CMS will decide the implementation later
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Event Filter farm in ATLAS
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ATLAS%EF%CPU%extrapolation%versus%event%pile8up• The Event Filter (EF) farm
– Responsible to perform the HLT selection in a massively 

parallelised way
– Both hardware and software need upgrading

• Most cost-effective are commodity PC servers

• Current farm size estimate 
– 4.5 MHS06 (+HTT) to handle a L0 rate of 1 MHz

• CMS estimate is 9.2 MHS06
– 3000 dual-socket servers in 38 racks

• Test of GPGPU
– Tested two scenarios: up to four NVIDIA GK210GL 

Kepler archi. and a GTX1080 PCIe card w/ Pascal archi.
– Cost to increase the farm throughput would be similar 

when adding GPGPU or CPU
– With GPUs found very important to implement suitable 

event data format to avoid time-consuming conversions

Breakdown%of%task%time/event%in%a%Kepler%system

Interprocess%
communication



Summary
• Plans for the Trigger and Data Acquisition systems of ATLAS and CMS for the High-Luminosity 

Upgrades are detailed in a Technical Design Report or interim documents
– They will support an exciting and diverse physics programme

• Both trigger systems are designed in two levels: L0 and EF in ATLAS, L1 and HLT in CMS
– Flexible and scalable architecture to accommodate LHC conditions and physics needs

• The use of tracking information in the trigger is planned in both experiments to reduce rate
– CMS plans to do tracking using limited hit data at L1 at 40 MHz while ATLAS plans to do it 

within EF in a co-processor at 1 MHz

• The planned DAQ systems rely on the experience accumulated through Runs 1 and 2
– ATLAS and CMS DAQ systems mainly differ on the implementation of detector interfaces
– Most components need to be re-implemented to sustain increased event size and trigger rates

• Common R&D projects planned or ongoing to design the final system
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Outlook:  examples of common aspects
• Extensive use of big FPGAs

– Power delivery and thermal management and optics are key challenges
– Appropriate manpower expertise needed

• Use of Multi-Gigabit Transceiver links designed beyond 10 Gb/s  (16 and 25 Gb/s)
– Required given the expected detector data rates

• Extensive use of ATCA crates
– Cooling is a key challenge

• Potential use of GPUs
– Careful programming for an efficient performance

• Increased complexity of system-level integration, maintenance and operations
– Use of identical blades with different firmware foreseen in several places
– Firmware management needed
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THANK YOU !



References

• Technical Design Report for the ATLAS TDAQ system Phase-II Upgrade
– https://cds.cern.ch/record/2285584

• Interim Design Report of the CMS DAQ Phase 2 Upgrade
– https://cds.cern.ch/record/2283193

• Interim Design Report of the CMS L1 Trigger Phase 2 Upgrade
– https://cds.cern.ch/record/2283192 

10#July#2018############################################Imma#Riu ATLAS#and#CMS#TDAQ#HL:LHC#Upgrades############################################CHEP#2018 28 /#26



BACKUP
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ATLAS evolved system

10#July#2018##########################################Imma#Riu ATLAS#and#CMS#TDAQ#HL:LHC#Upgrades######################################CHEP#2018 30 /#26

Decision(making(to(evolve

– Two-level trigger  before event readout
• L0 and L1

– Based on regions of interest
– Regional tracking done at 4 MHz or 2 MHz 

(instead of 1 MHz)



ATLAS risk mitigation:  two-level trigger system

• The baseline L0 system can evolve to a L0/L1 system
– L1Track is introduced at L1

• Reuses HTT hardware from the baseline 
system

– Additional event rejection performed at L1
– L1 output trigger rate from 1 MHz to 600-800 kHz

• Criteria for evolution
– Hadronic trigger rates higher than expected 

• Large uncertainties in the hadronic trigger 
rates

– Inner Itk pixel occupancy higher than expected
• “Fast-clear” after L0 reduces readout 

bandwidth per FE chip 
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