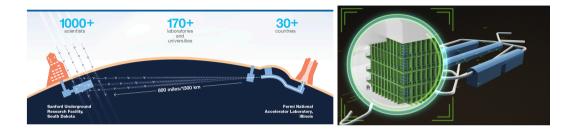
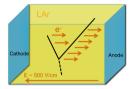


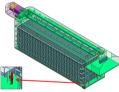
The DAQ systems of the DUNE Prototypes at CERN


Karol Hennessy on behalf of the DUNE collaboration

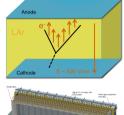
July 11, 2018

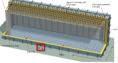
University of Liverpool

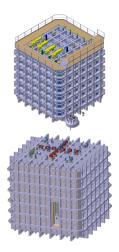

The Deep Underground Neutrino Experiment



- \cdot Intense beam of u_{μ} (or $ar{
 u_{\mu}}$) fired 1300 km at a large detector
- Studying CP violation in the lepton sector, proton decay, supernovae
- Beam from Fermilab
 - Muon neutrinos from 1.2-2.3 MW proton beam
- ...to Far Detector
 - 4 caverns housing 10+ kt liquid argon (LAr) detectors


DUNE Far Detector


- Four 10-kt (fiducial) liquid argon time projection chamber (LAr-TPC) super-modules
- gives excellent 3D imaging and energy measurement capability
- Single and dual phase detectors
- Integrated photon readout



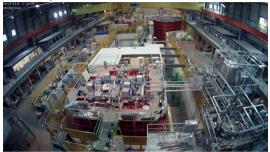
- 150 Anode Plane
 Assemblies (APAs) [
 - $2.3 \times 6 \text{ m}$]
- 384,000 readout wires

- signal amplification in gas phase
- 80 Charge Readout Planes (CRPs) $[3 \times 3 \text{ m}^2]$

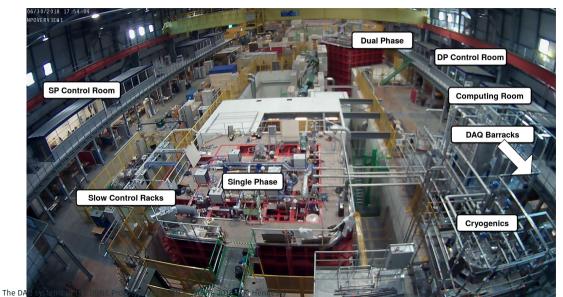
Single Phase

- Ionization signals (collection + induction) read out in liquid volume
- \cdot As used in ICARUS, ArgoNEUT/LArIAT, MicroBooNE
- Long-term operation/stability demonstrated by ICARUS T600

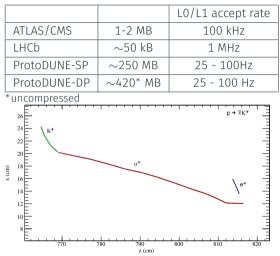
Dual Phase


- Ionization signals *amplified* and detected in gaseous argon above the liquid surface
- $\cdot\,$ Being pioneered by the WA105 collaboration
- If demonstrated, potential advantages over single-phase approach

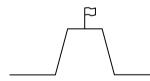
- $\cdot\,$ Both at surface
 - lots of **cosmics** dominant signal source (kHz)
- Goals
 - Demonstrate the viability of components and solutions for Far Detector modules
 - Learn procedures for construction, assembly, commissioning
- They look similar but...
 - Separate beam lines
 - Very different electronics and readout strategies


EHN1 - August 2016

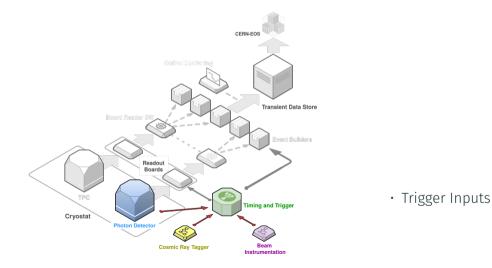
EHN1 - June 2018

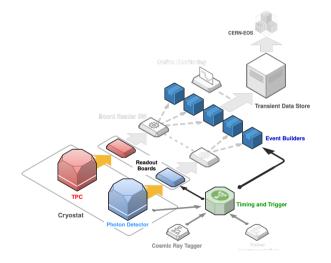

• Very rapid timescale!

LAr-TPC Event Reconstruction - from a DAQ perspective

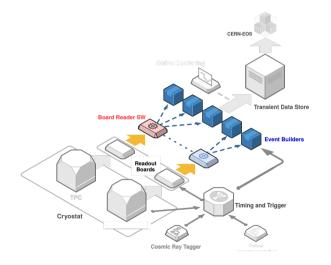

- Very different from collider physics
- Ionized charge drift is *slow* 2.5 ms (7.5 ms dual-phase)
- Crudely speaking...
 - LHC detectors take "photos" to capture and event every 25 ns
 - LAr-TPC detectors take "video" many snapshots to capture the 2.5 ms drift
- Consequence event sizes are much larger, but there are fewer of them
- Direct effect on dataflow management, storage, etc.

Simulated nucleon decay event $p \rightarrow v \bar{K} +$, with a subsequent leptonic decay of the K+. This event has been fully reconstructed, and the different tracks found by the automated reconstruction are shown by different colors.

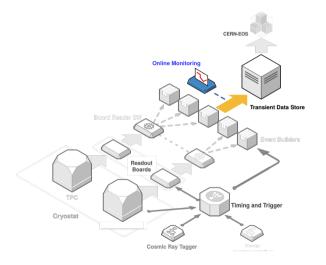

Single Phase DAQ

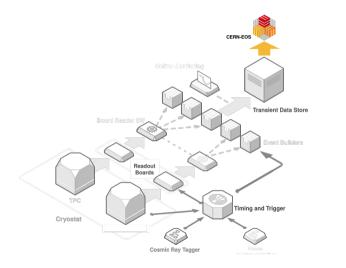


Single-Phase DAQ



- DAQ is **optically isolated** from cryostat to minimise noise to front-end
- Data is triggered and compressed online in hardware and software prior to event building
- Events sent offline at up to 20 Gb/s




 Timing and Trigger to Front-Ends and Event Builders

• Data fragments to Event Builders

 Data to Temporary Storage

• Data to Offline

TPC Warm Interface Boards (WIBs)

- Interface from cold electronics to DAQ with shielding and local real-time diagnostics
- Source: ProtoDUNE Front-end Motherboards (FEMBs)
- Multiplex data from 4 FEMBs
- Output: Optical links to DAQ, towards readout systems and slow control

The DAQ systems of the

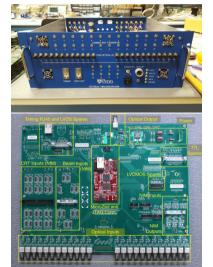
, 2018 — K. Hennessy

Photon Readout (SSP)

- The Silicon Photomultiplier Signal Processor (SSP) prototype module
- High-speed waveform digitizer
- Current sensitive, differential input amplifiers
- Good noise performance over long cables
- 12 channels per module

Timing system

- Provides a **50 MHz clock** to all endpoints
- Multiplexed 8b10b encoded data stream
- Endpoint CDR circuit recovers clock and data
- Interface for CERN SPS spill signals (start of spill, etc.)
- Dedicated trigger interface timing system data stream provides trigger distribution
- Interface to backpressure signals trigger inhibit
- GPS driven, 64-bit timestamps
 - provided to event builders for fragment matching
 - provide unambiguous event time in data irrespective of file, run, etc.
- Partitionable system



Trigger system

- Input from Beam instrumentation, Photon Detector system, Cosmic Ray Tagger
- Configurable at run time
 - multiple trigger levels, prescales, veto
- \cdot Tightly coupled to timing system
- Dedicated data stream for calibration

Central Trigger Board

- Based on Xilinx Zynq 7020 MicroZed System-on-Chip
- 100 inputs optical, NIM, TTL, LVDS...

TPC Readout - RCE

- Reconfigurable Cluster Element
 - ATCA-based readout solution
 - Used in several experiments LSST, Heavy Photon Search, ATLAS Muon...
 - Custom Rear Transition Module (RTM) for experiment interfaces
 - + $4 \times$ QSFP+ input transceivers for ProtoDUNE-SP
 - **High Level Synthesis** for C++ based algorithms on FPGA fabric

ProtoDUNE-SP

- TPC input data rate -64 Gb/s
- Triggers and compresses data

The RCE Platform

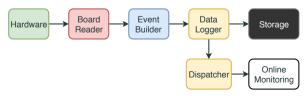
- High density/high performance
- Nine clustered processing elements on a board
- Zynq 7045 SoC
- Dual core ARM A9
- 1 GB DDR3 RAM
- 10 Gb/s onboard switch

Poster on RCE from Ka Vang Tsang

TPC Readout - FELIX

- FrontEnd LInk eXchange
- Designed for ATLAS LAr Calorimeter Phase-I Upgrade
- \cdot PCIe based readout solution
- ProtoDUNE-SP
 - readout 1 APA (one-sixth of TPC)
 - Software trigger selection
 - Software compression (can be accelerated with Intel QuickAssist (QAT) technology)

Detailed talk on FELIX from Enrico Gamberini -Thurs @ 11am


The FELIX Platform

- Card for ProtoDUNE-SP: FELIX BNL-711
- Xilinx Kintex Ultrascale
- 48 duplex optical links @ 14 Gb/s
- \cdot PCIe Gen3 x16 lanes (pprox 100 Gb/s)
- Onboard DDR4 up to 16 GB
- GBT for front-end communication

Dataflow software - artDAQ

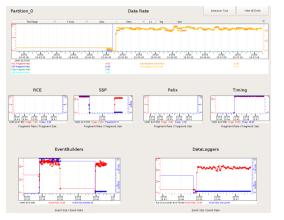
- artDAQ data acquisition software toolkit
- configuration delivery and data readout of front-end hardware
- event building, data logging
- infrastructure for filtering, compression and online analysis
- infrastructure for real-time data quality monitoring

D localhest strends											ŵ.			
D Reaming street.										н		*		
				ARTD	AQ Cor	figuration Edi	tor							
Information	iystemLayou	t RCEs	<u>55P.s</u>	expert_opt	ions	Components	Timing	Aggregators	EventBuilders	4	omn	ien.,	code	1
ssp_standa	ind metrics	rce_sta	indard	penn_stand	fard	monitoring_st	andard						_	
C File Inform	ation													
C File Conte	nts													
Nave		VAN			User Car	owent								
- paolog														
v ICA_RIANDAND														
reas_tage	distances in the	1048576												
v happent, n	celver													
rp()sf		16												
		24000												
		4												
		4												
generate	1	TpcRcetteceive	r											
hapment		7PC												

- configuration database for storing/retrieving HW&SW config
- Used on many experiments -DarkSide-50, LArIAT, mu2e, SBND, ICARUS

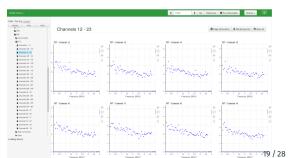
Run Control

- Based on CERN's JCOP (Joint Controls Projects) extension to Siemens WinCC-OA framework
 - Used by all LHC experiments
- Interfaces with artDAQ
- Finite State Machine
- Partitionable system allows for parallel operation separate parts of the system

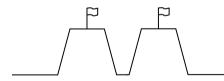

- Primary front-end to data taking
 - \cdot interacts with Run database backend
 - catalogs run information, and submits to logbook
 - essential for error information and diagnosis

Operational Monitoring

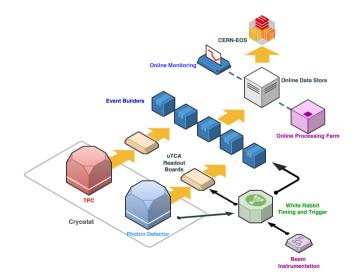
- **Metric reporting** from artDAQ components
- Display and archiving of trends for different quantities
- Archived to CERN central Oracle databases
- Shows:
 - data sizes, rates
 - fragment and event sizes and rates
 - individual or aggregated metrics



Online Monitoring


- Monitor detector performance during data taking
- Provide feedback for calibration
- Used to qualify the APAs in "cold box*" tests during installation
- Based on *art* and *LArSoft* physics software for LAr-TPC experiments
- DataLogger sends events to one or more dispatcher processes
- Dispatchers route events to the online monitoring processes
- *test of electronics and front-end performance in liquid nitrogen bath

- RAW decoders unpack the raw data to perform low-level analysis
- ArtAnalyzers perform high-level analysis of the unpacked events
- Histograms are saved and propagated to the **web display** Monet

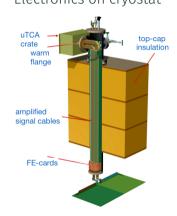


Dual Phase DAQ

DAQ back-end network structure

- Very large data volume continuously written to disk
- Lossless compression close to front-end
- Large Processing farm for online reconstruction and data quality
- Events sent offline at up to 20 Gb/s

- Cryogenic ASIC amplifiers are externally accessible
- Digital electronics accessible at top of cryostat
- Architecture based on $\mu {\rm TCA}\,$ standard
 - 12 crates, 10 AMC cards, 64 ch/card
 - 1 crate for light readout
 - 64 ch AMC digitisation cards



Front-end amplifier card

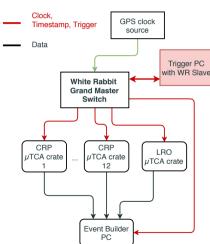
 $\mu {\rm TCA} \ {\rm crate}$

AMC readout cards

- Charge Readout Plane (CRP)
 - Intel Cyclone V GX FPGA with NIOS processor
 - 2.5 MHz, 12 bit, 10 GbE connectivity
 - Lossless Huffman-like compression (factor 10)
 - + $\mu {\rm TCA}$ backplane provides dedicated WR clock and trigger transmission
- Light Readout (LRO)
 - Basic architecture derived from charge readout AMC cards, 16 LRO channels per card
 - $\cdot\,$ External trigger $\pm4\,\text{ms}$ around beam spill
 - Internal Light ReadOut trigger from CATIROC ASIC for out of spill data
 - \cdot will acquire 1 drift window for these LRO triggers
 - 14 bit digitiser @ 40 MHz reads PhotoMultiplier tubes

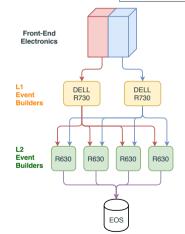
Timing & Trigger

- \cdot White Rabbit distribution system
 - Sub-1ns accuracy
- external triggers from beam instrumentation, cosmic ray counters, or light readout system
- + $\mu {\rm TCA}$ DAQ architecture integrated with White Rabbit network


2018 — K. Hennessy

+ White Rabbit slaves in $\mu {
m TCA}$ crates

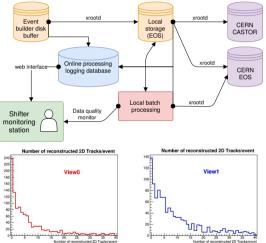
HOT CERN OHL V 12


The DAQ systems of the DUNE Pro

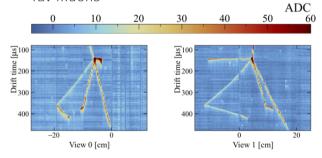
WRS-3/18

Event Builders

- Two Level-1 event building PCs
 - DELL R730, 256 GB RAM
 - 2 Intel X710 Ouad Port 10 Gb/s
 - 1 Mellanox Connect-X3 Dual Port 40 Gb/s
 - Collates data for a drift (each PC does half-detector)
- Four Level-2 event building PCs
 - DELL R630, 128 GB RAM
 - 1 Mellanox Connect-X3 Dual Port 40 Gb/s
 - Assembles whole event from half-event fragments: prepares multi-event files for writing offline
- Interconnectivity via Brocade ITX7750 26 port switch

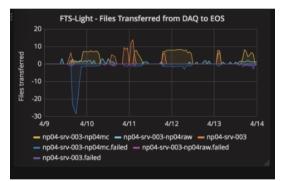


Storage/Processing


- Online processing and storage facility
- 1 PB storage
- 384 cores for processing
- internal bandwidth 20 GB/s
- \cdot key element of online analysis
 - identification of cosmics, purity, gain, event filtering

$3 \times 1 \times 1$ dual-phase prototype

- "proto"-prototype for DUNE-DP
- Exchange of electronics tested
- **Demonstrating first results** of charge amplification using cosmic ray muons



Cosmic ray (raw) events recorded in the $3 \times 1 \times 1m^3$.

Data Challenge

- "DC2" involving SP, DP, and offline computing from CERN to Fermilab
- Single Phase
 - Data copy without disturbing DAQ operation
 - Sustained full 20 Gbit/s bandwidth EHN1 to EOS
- Dual Phase
 - Steady 20 Gbit/s EHN1 to EOS for 24 hrs
 - Very few errors, and causes fixed shortly thereafter

Final Remarks

- ProtoDUNE single and dual-phase are essential milestones on the roadmap to DUNE
- Qualify electronics and DAQ solutions and provide early physics performance feedback
- Largest LAr-TPC and test-beam experiments today
- Several DAQ solutions under study
- Looking forward to providing first results by the end of 2018

Inside the cryostat (before module installation)

Thank You