

23rd International Conference on Computing in High Energy and Nuclear Physics

9-13 July 2018 National Palace of Culture Sofia, Bulgaria

EOS Open Storage

evolution of an ecosystem for scientific data repositories

http://eos.cern.ch

Andreas-Joachim Peters
CERN IT-ST

Overview

· Introduction

- what is EOS?
- history
- architectural evolution
- EOS service at CERN
 - dimension & challenges
- EOS in a science ecosystem
 - EOS, CERNBox & SWAN
- EOS as a filesystem
- Evolution data processing object storage models

What is EOS?

- disk storage system designed to serve physics analysis use cases high concurrency, pseudo-random access, LAN/WAN clients
- implemented as plug-ins into the **XRootD** framework
- native transport protocol is XRootD [optimized for latency compensation]
- code is written in C++ in IT-ST group at CERN

What is EOS?

LHC Use Case

Data Export to Worldwide Computing Grid

2017 1y averages

50k reader - 6k writer **36 GB/s read** - peak **120 GB/s**

Project History

Introduction Architectural evolution

stateful in-memory

meta data service daemon becomes stateless

Introduction Architectural evolution

better support of filesystem semantics requires FS clients receiving call-backs

EOS service at CERN

designed as a 'lossy' service with two replica CERN/Wigner file replication

2017

1 PB

2010

bytes read
bytes written
disk IO
hard disks
streams
fileloss rate

2012

1.00 EB/a

0.25 EB/a

7.90 EB/a

~ 50k

~ 55k

 $\sim O(10^{-6})/a$

Parallel Sessions
Providing large-scale disk
storage at CERN

Parallel Sessions

<u>Disk failures in the EOS</u>

<u>setup at CERN</u>

at CERN

2014

2016

2018

OS service at CERN

- cheap disk storage
- > 1.300 server, 50k disks
- JBOD with dual (geo-) replication
- 48-192 disks per standard head-node (batch server) in production
- new big server provide 2 PB storage capacity

BEER containerised batch jobs on EOS disk server

Sharing server nodes for storage and compute

cheap volume storage on HDD

A new CERNBOX backend Segmented high-available service model

Since 2017 service running over scalability limit - new service architecture

CERNBox share mobile web webdav xroot 3 ACLs $\Lambda \lambda$ Physical Storage

The EU Up to University **Project**

Cloud Storage for dataintensive sciences in science and industry

Number of files

~ exp. growing

- "dropbox" for science
- cloud storage, synchronisation and file sharing service
- implemented as web services in front of EOS backend

since mid 2017 support for collaborative editing

connected client platforms

~3.000 daily users, 9k connected devices

CERNBox refactored using micro service approach - boost performance & functionality

SWAN service

web-based analysis

Facilitating collaborative analysis in SWAN

swan.web.cem.ch

service architecture

SWAN provides interactive analysis front-end using JUPYTER notebooks

SWAN & compute

SWAN & compute

next: SWAN interfacing to Batch Cluster

packaged eco-system

Science Box

Science Box provides an easy demo & production platform

Parallel Sessions

CERN Tape Archive: From

Development to

Production Deployment

integrated support for tape into EOS file on tape=offline replica

- loose service coupling between EOS and CTA via protocol buffer interface & notification events
- no SRM, using XRootD protocol only for now integrated with FTS
- pre-production service for ATLAS available

Mid-term plan to migrate CASTOR data to CTA

eosxd - a filesystem client for EOS

Why this is important but difficult ...

- mounted filesystem access is required to enable storage access to any software out of the box
- filesystem development is difficult and lengthy

AFS V1,2,3 - **35 years**NFS V1,2,3,4 - **34 years**cephfs - **12 years** - production version announced after 10 years!

EOS filesystem client rewrite started Q4 2016: eosd => eosxd

filesystem daemon

- enough **POSIX**ness
- file locks, byte-range locks
- hard **links** within directories
- rich ACL client support
- local caching
- **bulk deletion**/protection
- strong **security** & mount-by-key
- user, group & project quota
- implemented using libfuse

eosxd provides POSIXness very similar to AFS

FUSE filesystem daemon

Strong Security Model

application runtime: export KRB5CCNAME or X509xxx

kerberos or X509 authentication

ACL per directory by mapped uid/gid

sys.acl=u:foo:rwx

before mount: export XrdSecsssENDORSEMENT=<secret>

shared secret authentication

ACL per directly by exported secret

sys.acl=k:B8E776C5-F5B2-4EF1-B2C3-64CB7C158FF3:rwx

clients **exports environment variables** in application context to configure strong authentication - *root* role on client is **unavailable**

sub-mount feature glue external filesystems

 automount is a proven solution, but it has a static configuration and can not be configured by a user on the fly

/eos/user/f/foo/
/eos/user/f/foo/software/root6
/eos/user/f/foo/hpc
/eos/user/f/foo/s3
/eos/user/f/foo/backups

- → **EOS** area
- → software **image**
- → manila share
- → S3 bucket
- → backup snapshots

Short answer: yes we can!

sub-mount feature

glue external filesystems

- allows eosxd to mount on-the fly any kind of filesystem described by a symbolic link in the EOS namespace
 - implemted: **squashfs** images with e.g. software distributions ...
 - extremely space efficient file distribution with zstd compression, export millions of small files as a single image file
 - high-performance kernel module or FUSE module available

```
-rw-r--r- 1 nobody nobody 256622592 Jun 29 18:04 .gcc-4.9.3.sqsh
lrwxrwxrwx 1 nobody nobody 1 Jun 29 18:04 gcc-4.9.3 -> squashfuse:
```

- envisaged: external filesystem areas e.g. high-performance manila shares, s3 buckets etc. ...
 - store cephx or s3 key as private extended attribute in EOS
- envisaged: restic backup snapshots of user areas with restore password in extended attributes in EOS
 - browse/recover existing backups stored in an external instance without help from a service manager

eosxd leverages performance of external optimised filesystems

Distributed Storage Architecture

XRootD

- centralised high-available namespace in KV store for meta data
- distributed object store for data
- distributed object store for data

Modular Storage

client sub-mounts, IO backends, storage frontends

Parallel Sessions

Ceph File System for the

CERN HPC infrastructure

Storage modules allow extensions and replacement of custom low-level functionality with external solutions

Modular Storage XRootD http ecosystem

gridFTP

SRM

http access

the end of FTP/SRM

XRootD is growing a complete set of plug-ins for HTTP enabled storage allowing decommissioning of gridFTP/SRM soon(ish)

rEvolution

of data processing & storage using object storage (?)

for a moment assume

Exabyte-scale Object Storage

Our conventional file processing model

Parallel processing of a large file by e.g. 10k subtasks is not very scalable/efficient when using POSIX I/O.

Do we need to change this simple model?

Why Spark on Ceph? (Part 1 of 3)

Posted on: June 25, 2018

https://redhatstorage.redhat.com/2018/06/25/why-spark-on-ceph-part-1-of-3/

Sounds HADOOP-like

but **means** only **S3 remote reading**

Conclusion in this article:

Not highest possible performance when **storage and compute** are **separated** but the most flexible model when you have many people sharing infrastructure.

We figured that out already. **That is what we did and do!**

positive+ CEPH S3 buckets can be configured to be index-less removing a scalability limitation [sacrifying listings & accounting] negative- CEPH S3 for HEP analysis misses multi byte-range request and data flows via gateways. Good news: that could be fixed!

Most people mean S3 when they talk about Object Storage
In fact applications know nothing about objects

Object Storage Usage Models ... mainly about Parallel 10

There are many ways to do the same thing with subtle differences in complexity & functionality. Which one is the best? ... depends ...

Data processing with application object awareness

Allows to move some IO processing inside the object storage non-generic but use-case optimised approach - nice R&D

Summary & Outlook

- EOS has been under steady evolution since 8 years.
 - major promoter of XRootD as a framework and remote access protocol in HEP
 - CERN service had overrun design limitation in meta-data & data size during 2017 with visible impact
 - this year marks a major architectural change for scalability, availability & usability
- EOS converges towards an integrative platform of external storage components and services for scientific data processing
 - it leaves flexibility to integrate new ideas & requirements easily e.g. CERNBOX/SWAN/EOS eco-system
 - open to paradigm shift: leverage low-level components and implement high-level storage functionality
- Exabyte-scale Object Storage is an interesting technology to consider for LHC Run3
 - requires a detailed evaluation of the performance/cost model for storage and possible application benefit. Simplest approach is to build storage tiers and hide objects completely from applications. In this case: nothing visible will change for applications!

