Thermo-structural analysis on the UHV gate valve between PSB and ISOLDE (accidental case)

Andre Pilan Zanoni, Marco Calviani (EN-STI-TCD) Jose A. Briz, Vasilis Vlachoudis (EN-STI-FDA)

0. Valve type / position

- UHV gate valve with pneumatic actuator
- Series 10.8, DN 63 200 (2½" 8"), VAT Vakuumventile
- Housing / mechanism material: AISI 304 (1.4301)
- They are used to separate 7 vacuum sectors:
 - 4 sectors from the PSB extraction to BTY
 - 3 in the BTY line

- 1 Gate
- 4 Ball pairs
- 7 Spring stop

- 2 Counter-plate3 Leaf springs
- 5 Ball detents6 Gate seal
- ▼ Valve seat side

1. Simulation properties

- Beam kinetic energy: 1.4 and 2.0 GeV (ISOLDE beam)
- Gaussian beam shape with $\sigma_x = 1.2$ mm, $\sigma_y = 1.9$ mm
- Beam intensity: 1.6 x 10¹³ protons

• 10 cm x 10 cm x 2 mm target. SS304L material (ρ=8.02 g/cm³)

1.4 GeV proton beam deposition

98.7% of the beam energy scattered 1.3% intercepted 0.22% absorbed (3.16 MeV / proton)

2.0 GeV proton beam deposition

Comparative for 2 beam energies

277 J/cm³/pulse and ~69 K/pulse are peak values (obtained for 2 GeV)

For Adiabatic temperature rise: $\Delta T(\frac{K}{\text{pulse}}) = \frac{E(\frac{\overline{cm^3}}{pulse})}{c(\frac{J}{g}/K)*\rho(\frac{g}{cm^3})}$ with $c_{SS304L} = 0.5 \text{ J/(g x K)}$

2. Thermal-structural analysis

- Two repeated beams
- Repetition rate: 1.2s
- Pulse length: 100 μs
- Initial temperature: 22°C

- FEM simulation (Ansys 17.1)
- SHELL131/181 layered elements
 - 20 layers (see EDMS 1610806)
- Boundary conditions:
 - Thermal: conduction through matter (neither convection nor radiation considered)
 - Mechanical: four edges fixed / bilinear isotropic hardening material model

Results for two repeated pulses

Maximum temperatures reached

 $\sigma_{\text{eqv}}/\sigma_{\text{yield}} < 1$: only elastic deformation

Multiple repeated pulses

• No necking for 40 repeated pulses ($\sigma_{eqv} < \sigma_{ultimate}$)

- Quasi-asymptotic behavior reached at ~160°C, due to thermal mass only

- Tensile strength is not reached after 40 repeated pulses ($\sigma_{eqv} < \sigma_{tensile}$)

Plastic deformation

- $\varepsilon_{\text{tensile}}$ (150°C) ~ 200x10⁻³ (no necking as $\varepsilon_{\text{plastic,max}}$ =1.8x10⁻³)
- $\varepsilon_{\text{elastic,max}} = 0.8 \text{x} 10^{-3}$

Stress-strain curve

stress/strain on the 40th pulse

Multilinear model (before necking)

Bilinear model

Curves from: Dempsey, J. Franklin, et al. "Temperature dependent ductile material failure constitutive modeling with validation experiments." Challenges in Mechanics of Time-Dependent Materials and Processes in Conventional and Multifunctional Materials, Volume 2. Springer New York, 2013. 7-15.

Steady-state results

- Heat sink: radiation from the plate (ε =0.6 to the environment) only
 - No convection
- Maximum temperature: 180.5°C (operational limit at T_{creep}=550°C)

3. Conclusion

- Nearly the same energy deposition for 1.4 & 2GeV beams
- 2 repeated pulses:
 - T_{max}=106°C
 - No plastic deformation: σ_{max} = 135.7 MPa (equivalent von-Mises stress)
 - σ_{limit}=σ_{yield}= 141.4 MPa (yield strength at 106°C)
- A third repeated pulse causes plastic deformation
- Tensile strength is not reached after 40 repeated pulses
- T_{max}=160°C (transient, 40 repeated pulses)
- T_{max}=180.5°C (steady-state, constant beam impacts)

