Dirac Fields in Hybrid LQC

Guillermo A. Mena Marugán, Instituto de Estructura de la Materia, CSIC (With B. Elizaga Navascués & M. Martín-Benito)

Kazimierz Dolny, 25 September 2017

- Any fundamental theory includes **fermionic** fields.
- It is interesting to incorporate fermions in analyses of the **Early Universe** and of possible effects on the primordial perturbations.
- We want to extend the **hybrid LQC** formalism including Dirac fields. This will put to the **test** the very own consistency of the hybrid approach.
- We want to obtain a framework to discuss the effects of quantum geometry on realistic quantum matter fields.
- In this way we can explore issues such as the definition of a vacuum, the recovery of QFT, and backreaction.

Unperturbed model

 We start with a FLRW model with flat compact sections (threetori).

$$ds^{2} = \frac{4\pi}{3} \left[-\left(\frac{4\pi e^{3\alpha(t)}}{3}\right)^{2} N_{0}^{2}(t) dt^{2} + e^{2\alpha(t)} h_{ij} d\theta_{i} d\theta_{j} \right].$$

We include a scalar field (the **inflaton**) subject to a potential $W(\phi)$.

- The phase space can be described with two canonical pairs:
 - 1) (ϕ , π_{ϕ}) for the inflaton.

Unperturbed model

2) (v, b) for the **FLRW geometry**, adopting the usual description in LQC, with $\{b, v\}=2$ and

The sign of v determines the orientation of the triad.

The **volume** of the homogeneous sections is $V = 2\pi \gamma \Delta_g^{1/2} |v|$.

• The system is subject to a (rescaled) Hamiltonian constraint:

$$H_{0} = \frac{1}{2} \left(\pi_{\phi}^{2} - H_{0}^{(2)} \right), \qquad H_{0}^{(2)} = 3 \pi (vb)^{2} - 2 V^{2} W(\phi).$$

- We perturb the geometry and the inflaton, and truncate the action at second perturbative order.
- Using spatial, vector, and tensor harmonics, constructed from the Laplace-Beltrami operator on the spatial sections, we expand the perturbations in modes.
- **Zero-modes** are treated exactly at second perturbative order.
- In this perturbative scheme, the total system is a **constrained** system with a **canonical** structure.

 Linear perturbative constraints generate perturbative diffeomorphisms. Only perturbative quantities not affected by these transformations are physical:

GAUGE INVARIANTS.

- **Tensor perturbations** are gauge invariants.
- The **Mukhanov-Sasaki invariant** is related to the comoving curvature (*scalar*) perturbations. Its **momentum** can be chosen proportional to the time derivative.
- One can find **momenta** for the linear perturbative constraints, that commute with the gauge invariants.

 In all these considerations, the **background** variables (zeromodes) had been kept fixed.
 [Langlois]

- The variables for the perturbations can be completed into a canonical set for the whole system. [Pinto-Neto]
- Zero-modes are corrected with a fixed quadratic contribution of the perturbations.

The **corrected zero-modes** are the genuine free (*background*) variables.

 This correction of the zero-modes modifies the quadratic perturbative contribution to the global Hamiltonian constraint.

The resulting global Hamiltonian constraint is a gauge invariant.

- This **quadratic perturbative contribution**, additional to the Hamiltonian of the homogeneous sector, equals the Mukhanov-Sasaki Hamiltonian ${}^{MS}H_2$ plus the tensor one ${}^{T}H_2$.
- The rest of the total Hamiltonian is a sum of linear perturbative constraints, with redefined Lagrange multipliers.

• We introduce a **massive Dirac field** Ψ :

$$S_{D} = \int d^{4}x \sqrt{|g|} \left[i M \Psi^{\dagger} \gamma^{0} \Psi - \frac{1}{2} \left(i \Psi^{\dagger} \gamma^{0} e^{\mu}_{a} \gamma^{a} \nabla^{S}_{\mu} \Psi + Hermitian \ conj. \right) \right].$$

Mass Tetrad Dirac matrices

Connection

At our truncation order the Dirac field, regarded as a perturbation, couples directly with the (corrected) **FLRW geometry**.

- Adopting the Weyl representation for the Dirac matrices, we can describe the Dirac field by a pair of two-component spinors of definite chirality φ_A , $\overline{\chi}_{A'}(A, A'=1,2)$, that are **Grassmann** variables.
- In the internal time gauge $e_0^a = 0$ $(a \neq 0)$, the gauge group reduces to SU(2).

 We expand the spinors in eigenmodes of the Dirac operator on the spatial sections, with <u>time-dependent</u> anticommuting coefficients:

 $\vec{\tau}$ may be any of the vertices of the cube with side $\frac{1}{2}$.

Eigenmode expansion:

$$\phi_{A}(x) = e^{-\frac{3\alpha}{2}} \left(\frac{3}{4\pi}\right)^{3/4} \sum_{\vec{k},(\pm)} \left[m_{\vec{k}} w_{A}^{\vec{k},(+)} + \overline{r}_{\vec{k}} w_{A}^{\vec{k},(-)}\right], \qquad \text{Same helicity} \\ \bar{\chi}_{A'}(x) = e^{-\frac{3\alpha}{2}} \left(\frac{3}{4\pi}\right)^{3/4} \sum_{\vec{k},(\pm)} \left[\overline{s}_{\vec{k}} \overline{w}_{A'}^{\vec{k},(+)} + t_{\vec{k}} \overline{w}_{A'}^{\vec{k},(-)}\right].$$

Eigenvalues: $+\omega_k = 2\pi |\vec{k} + \vec{\tau}|$, each with **degeneracy** $g_k = O(\omega_k^2)$.

Let us use the same annihilation and creation variables as **D'Eath** & Halliwell. For nonzero-modes, and $(x, y)=(m, s) \circ (t, r)$:

$$a_{\vec{k}}^{(x,y)} = \sqrt{\frac{\xi_k - \omega_k}{2\xi_k}} x_{\vec{k}} + \sqrt{\frac{\xi_k + \omega_k}{2\xi_k}} \overline{y}_{-\vec{k}}, \qquad \overline{b}_{\vec{k}}^{(x,y)} : \omega_k \to -\omega_k; \qquad \xi_k = \sqrt{\omega_k^2 + M^2 V^{2/3}}.$$
Particle annihilation
Antiparticle creation

• Variables: (x, y) = (m, s) or (t, r).

$$a_{\vec{k}}^{(x,y)} = \sqrt{\frac{\xi_k - \omega_k}{2\xi_k}} x_{\vec{k}} + \sqrt{\frac{\xi_k + \omega_k}{2\xi_k}} \overline{y}_{-\vec{k}}, \quad \overline{b}_{\vec{k}}^{(x,y)} : \omega_k \to -\omega_k; \quad \xi_k = \sqrt{\omega_k^2 + M^2 V^{2/3}}.$$

This choice provides an **instantaneous diagonalization** of the Dirac Hamiltonian.

- The choice is **unique** up to unitary transformations if:
- The FLRW background is treated classically.
- The dynamics of these variables must be unitarily implementable on Fock space.
- The Fock vacuum must be invariant under the Killing isometries of the spatial sections and the spin rotations generated by the helicity.
- The convention of particles and antiparticles must connect smoothly in the massless limit with the standard one.

Fermionic perturbations

 The D'Eath & Halliwell variables are volume dependent. Hence, the FLRW geometric momentum must be corrected to maintain the canonical structure:

$$b \to b + i \frac{M \omega_k V^{1/3}}{3 \xi_k^2 v} \sum_{(x, y), \vec{k}} \left(a_{\vec{k}}^{(x, y)} b_{\vec{k}}^{(x, y)} + \overline{a}_{\vec{k}}^{(x, y)} \overline{b}_{\vec{k}}^{(x, y)} \right)$$

Once this volume dependence is taken into account, the contribution of the fermionic nonzero-modes to the global **Hamiltonian constraint** becomes

$$\sum_{\vec{k}} H_{D}^{\vec{k}} = \sum_{(x,y),\vec{k}} \frac{\xi_{k} V^{2/3}}{2} (\bar{a}_{\vec{k}}^{(x,y)} a_{\vec{k}}^{(x,y)} - a_{\vec{k}}^{(x,y)} \bar{a}_{\vec{k}}^{(x,y)} + \bar{b}_{\vec{k}}^{(x,y)} b_{\vec{k}}^{(x,y)} - b_{\vec{k}}^{(x,y)} \bar{b}_{\vec{k}}^{(x,y)}) + 2\pi i \sum_{(x,y),\vec{k}} \frac{M \omega_{k} V^{1/3}}{2\xi_{k}^{2}} vb (a_{\vec{k}}^{(x,y)} b_{\vec{k}}^{(x,y)} + \bar{a}_{\vec{k}}^{(x,y)} \bar{b}_{\vec{k}}^{(x,y)}).$$
Instantaneous diagonalization
Particle production

Hybrid quantization

- For the geometry zero-modes (v, b) we adopt the **polymeric** representation of LQC, with **superselection** of volume states.
- For the inflaton, a conventional **Schrödinger** representation.
- For the Mukhanov-Sasaki field, the tensor perturbations, and the Dirac field, a Fock representation (selected by unitarity criteria).
- The linear perturbative constraints imply that physical states depend only on zero-modes and gauge invariants.
- Only one relevant constraint remains: the global Hamiltonian one.

$$\boldsymbol{H}_{T} = \boldsymbol{H}_{0} + {}^{MS}\boldsymbol{H}_{2} + {}^{T}\boldsymbol{H}_{2} + \sum_{\vec{k}} \boldsymbol{H}_{D}^{\vec{k}}.$$

Hybrid quantization: LQC

- In **Loop Quantum Cosmology**, the canonical variables can be chosen as the volume variable v, proportional to the cube of the scale factor, and the scaled **connection** $b \propto \dot{\alpha}$, with $\{b, v\}=2$.
- Only **holonomies** of the connection are meaningful. Their elements can be expressed in terms of $e^{\pm i b/2}$.
- These holonomies shift the volume in a constant, unit step.
- We adopt a volume representation with DISCRETE measure. It is not continuous.
- The unperturbed Hamiltonian constraint leaves invariant **superselection sectors** with volume eigenvalues that differ in multiples of 4 units.

Hybrid quantization

• In particular:

$$\hat{H}_{0} = \frac{1}{2} \left(\hat{\pi}_{\phi}^{2} - \hat{H}_{0}^{(2)} \right), \qquad \hat{H}_{0}^{(2)} = \frac{3}{4 \pi \gamma^{2}} \hat{\Omega}_{0}^{2} - 2 \hat{V}^{2} W(\hat{\phi}),$$

- In the **fermionic part** of the global Hamiltonian:
- Products with the volume are symmetrized algebraically.
- We represent vb by an operator Â₀ like Ω̂₀, but with double angle.
 ξ_k=√ω_k²+M²V^{2/3} is represented in terms of the volume, using the spectral theorem.
- We adopt normal ordering for creation and annihilation operators.

Born-Oppenheimer

 We adopt a Born-oppenheimer ansatz, with the inflaton playing the role of internal time:

$$\Phi = \chi_0 \psi = \chi_0(V, \phi) \psi_s(N_s, \phi) \psi_T(N_T, \phi) \psi_D(N_D, \phi),$$

$$\chi_0(V, \phi) = \hat{U}_0(V, \phi) \chi(V).$$

Fock representation

 χ_0 : Solution at the considered perturbative order.

 \hat{U}_0 : Evolution operator, with positive $\hat{\tilde{H}}_0 = [\hat{\pi}_{\phi}, \hat{U}_0]\hat{U}_0^{-1}$.

Approximation:

No change of FLRW geometry is mediated by the constraint.

The diagonal element in the FLRW geometry encodes all relevant information about the constraint.

Born-Oppenheimer

• With the ansatz $\Phi = \chi_0(V, \phi)\psi$ and our approximation, we obtain a quadratic **master constraint** for the perturbations, in which the quantum effects on the FLRW geometry are incorporated, and the homogeneous inflaton appears as an **internal time**.

Neglecting some ignorable terms for the scalar perturbations:

Possible FLRW contribution

$$\begin{split} \|\chi_{0}\|^{2} \hat{\pi}_{\phi}^{2}\psi + \langle (\hat{\tilde{H}}_{0})^{2} - \hat{H}_{0}^{(2)} \rangle_{\chi_{0}} \psi \\ + 2 \langle \hat{\tilde{H}}_{0} \rangle_{\chi_{0}} \hat{\pi}_{\phi} \psi = -2 \langle {}^{MS} \hat{H}_{2} + {}^{T} \hat{H}_{2} \rangle_{\chi_{0}} \psi - 2 \langle \sum_{\vec{k}} \hat{H}_{D}^{\vec{k}} \rangle_{\chi_{0}} \psi. \\ \\ LQC \text{ inner product} \\ \end{split}$$

Born-Oppenheimer

 If the perturbations have a negligible contribution to the inflaton momentum compared to the average of the FLRW part, we arrive at **Schrödinger** equations for the different perturbations.

In particular:

$$\hat{\pi}_{\phi}\psi_{D} = -\frac{\langle \sum_{\vec{k}} \hat{H}_{D}^{k} \rangle_{\chi_{0}}}{\langle \hat{\tilde{H}}_{0} \rangle_{\chi_{0}}}\psi_{D} - \frac{C_{D}^{(\chi)}(\phi)}{2\langle \hat{\tilde{H}}_{0} \rangle_{\chi_{0}}}\psi_{D}.$$

Expectation values of the geometry

The constraint allows for a **backreaction**, which can add to zero:

$$C_{s}^{(\chi)}(\phi) + C_{T}^{(\chi)}(\phi) + C_{D}^{(\chi)}(\phi) = \langle (\hat{\tilde{H}}_{0})^{2} - \hat{H}_{0}^{(2)} \rangle_{\chi_{0}}.$$

 One can derive equations of motions for the perturbations directly from the master constraint, even without the above approximation.

Fermionic dynamics

 From the master constraint, the fermionic operators satisfy the Heisenberg equations:

$$d_{\eta} \hat{a}_{\vec{k}}^{(x,y)}(\eta) = -iF_{k}^{(\chi)} \hat{a}_{\vec{k}}^{(x,y)}(\eta) + G_{k}^{(\chi)} \hat{b}_{\vec{k}}^{(x,y)\dagger}(\eta), d_{\eta} \hat{b}_{\vec{k}}^{(x,y)\dagger}(\eta,\eta_{0}) = iF_{k}^{(\chi)} \hat{b}_{\vec{k}}^{(x,y)\dagger}(\eta) - G_{k}^{(\chi)} \hat{a}_{\vec{k}}^{(x,y)}(\eta).$$

where the evolution is described in terms of a <u>well-defined</u> **conformal time** that depends on the state of the FLRW geometry

$$d\eta = \frac{\langle \hat{V}^{2/3} \rangle_{\chi_0}}{\langle \hat{\tilde{H}}_0 \rangle_{\chi_0}} d\phi.$$

Here:

$$F_{k}^{(\chi)} = \frac{\langle \xi_{k}(\hat{V}) \hat{V}^{2/3} \rangle_{\chi_{0}}}{\langle \hat{V}^{2/3} \rangle_{\chi_{0}}}, \quad G_{k}^{(\chi)} = M \omega_{k} \frac{\langle \xi_{k}^{-1}(\hat{V}) \hat{V}^{1/6} \hat{\Lambda}_{0} \hat{V}^{1/6} \xi_{k}^{-1}(\hat{V}) \rangle_{\chi_{0}}}{2 \gamma \langle \hat{V}^{2/3} \rangle_{\chi_{0}}}$$

Fermionic dynamics

$$\begin{aligned} d_{\eta} \hat{a}_{\vec{k}}^{(x,y)}(\eta) &= -iF_{k}^{(\chi)} \hat{a}_{\vec{k}}^{(x,y)}(\eta) + G_{k}^{(\chi)} \hat{b}_{\vec{k}}^{(x,y)\dagger}(\eta), \\ d_{\eta} \hat{b}_{\vec{k}}^{(x,y)\dagger}(\eta,\eta_{0}) &= iF_{k}^{(\chi)} \hat{b}_{\vec{k}}^{(x,y)\dagger}(\eta) - G_{k}^{(\chi)} \hat{a}_{\vec{k}}^{(x,y)}(\eta). \end{aligned} F_{k}^{(\chi)} &= \frac{\langle \xi_{k}(\hat{V}) \hat{V}^{2/3} \rangle_{\chi_{0}}}{\langle \hat{V}^{2/3} \rangle_{\chi_{0}}}, \\ G_{k}^{(\chi)} &= M \omega_{k} \frac{\langle \xi_{k}^{-1}(\hat{V}) \hat{V}^{1/6} \hat{\Lambda}_{0} \hat{V}^{1/6} \xi_{k}^{-1}(\hat{V}) \rangle_{\chi_{0}}}{2 \chi \langle \hat{V}^{2/3} \rangle_{\chi_{0}}}. \end{aligned}$$

• Recall that $\xi_k(\hat{V}) = \sqrt{\omega_k^2 + M^2 \hat{V}^{2/3}}$. Therefore, fermions couple with an **infinite** sequence of expectation values on the geometry.

 The solution to the Heisenberg equations provides a Bogoliubov transformation from the initial operators.

There is no guarantee that it reproduces a transformation in an effective background.

Quantum evolution

• Let (α_k, β_k) be the coefficients of the Bogoliubov transformation. We must have $|\alpha_k|^2 + |\beta_k|^2 = 1$. We use the **parametrization**:

$$e^{i\omega_{k}(\eta-\eta_{0})}\alpha_{k} = \cos A_{k} + i\rho_{k}\frac{\sin A_{k}}{A_{k}}, \qquad \rho_{k} \in \mathbb{R}, \quad \Gamma_{k} \in \mathbb{C}$$
$$e^{-i\omega_{k}(\eta-\eta_{0})}\beta_{k} = -\Gamma_{k}\frac{\sin A_{k}}{A_{k}}, \qquad A_{k} = \sqrt{|\Gamma_{k}|^{2} + \rho_{k}^{2}}.$$

• Zero-modes aside, $\hat{U}_D = \hat{U}_B \hat{U}_F$ solves the fermionic evolution. \hat{U}_F rotates the phase of the operators by $\omega_k(\eta - \eta_0)$ and $\hat{U}_B = e^{-\hat{T}_B}$:

$$\hat{T}_{B} = \sum \left[\Gamma_{k} \hat{a}_{\vec{k}}^{(x,y)\dagger} \hat{b}_{\vec{k}}^{(x,y)\dagger} - \bar{\Gamma}_{k} \hat{b}_{\vec{k}}^{(x,y)} \hat{a}_{\vec{k}}^{(x,y)} - i \rho_{k} (\hat{a}_{\vec{k}}^{(x,y)\dagger} \hat{a}_{\vec{k}}^{(x,y)\dagger} + \hat{b}_{\vec{k}}^{(x,y)\dagger} \hat{b}_{\vec{k}}^{(x,y)}) + i c_{k}^{(x,y)} \right].$$

$$\vec{k} \neq \vec{0} \text{ if } \vec{\tau} = \vec{0}; (x, y) \in \{(m, s), (r, t)\}.$$
Phase

Unitarity

The quantum evolution is unitary iff the β -coefficients are square-summable. A careful asymptotic analysis proves that:

$$\beta_{k}(\eta) = i \frac{M}{4\omega_{k}^{2}} \Big[\lambda_{0}^{(\chi)}(\eta_{0}) e^{-i\omega_{k}(\eta-\eta_{0})} - \lambda_{0}^{(\chi)}(\eta) e^{i\omega_{k}(\eta-\eta_{0})} \Big] + \mathcal{O}(\omega_{k}^{-3}).$$

Since the degeneracy goes like $g_k = O(\omega_k^2)$:

The quantum evolution is indeed well-defined and **unitary**.

For large frequency, the β -coefficients are proportional to the fermion mass: negligible production of particles.

 $\lambda_0^{(\chi)} = \frac{\langle \hat{V}^{1/6} \hat{\Lambda}_0 \hat{V}^{1/6} \rangle_{\chi_0}}{\nu \langle \hat{V}^{2/3} \rangle} \longrightarrow \qquad \text{It vanishes "at the bounce",} \\ \text{reducing the particle production}$

Vacuum evolution

• It is an exact solution to the Schrödinger equation if the **backreaction** is $C_D^{(\chi)}(\phi) = 2 \langle \hat{V}^{2/3} \rangle_{\chi_0} \sum_{k \in \mathcal{N}} \left[G_k^{(\chi)} \Im(\Gamma_k) + \left(c_k^{(x,y)} \right)' \right].$

Recall that
$$G_k^{(\chi)} = M \omega_k \frac{\langle \xi_k^{-1}(\hat{V}) \hat{V}^{1/6} \hat{\Lambda}_0 \hat{V}^{1/6} \xi_k^{-1}(\hat{V}) \rangle_{\chi_0}}{2 \gamma \langle \hat{V}^{2/3} \rangle_{\chi_0}}$$
. Phase β -coefficient

Vacuum evolution

• **Backreaction:**
$$C_D^{(\chi)}(\phi) = 2 \langle \hat{V}^{2/3} \rangle_{\chi_0} \sum_{(x,y),\vec{k}} \left[G_k^{(\chi)} \Im(\Gamma_k) + (c_k^{(x,y)})' \right].$$

• Our asymptotic analysis gives:

$$G_k^{(\chi)}\Im(\Delta_k) = \frac{M^2}{8\omega_k^3}\lambda_0^{(\chi)}(\eta) \Big[\lambda_0^{(\chi)}(\eta) - \lambda_0^{(\chi)}(\eta_0)\cos[2\omega_k(\eta-\eta_0)]\Big] + \mathcal{O}(\omega_k^{-4}).$$

- Recalling that the degeneracy is $g_k = O(\omega_k^2)$, **regularization** of the backreaction, absorbing the divergent part in the phase, is *(barely)* needed.
- This considerably improves the situation found by D'Eath & Halliwell, who got, for each fermionic mode, a contibution $O(\omega_k)$.

Conclusions

- We have completed the hybrid loop quantization of a perturbed FLRW cosmology with scalar and **Dirac fields**.
- We have deduced a master constraint for the perturbations using a Born-Oppenheimer approximation.
- In the resulting quantum dynamics, the fermions couple with the geometry through an **infinite** number of expectation values.
- We have solved this fermionic quantum dynamics and proven that it is **unitary**, even if the geometry is a quantum entity.

Conclusions

- We have shown that the unitarily evolved vacuum for the Dirac field is a solution to the associated Schrödinger equation.
- Since the dynamics is unitary, the **production of particles** is finite. Furthermore, it is negligible for modes of large frequency.
- **Backreaction** effects in our vacuum require regularization, but the situation is much better than in traditional studies.
- Finally, there exists the possibility of choosing **another vacuum**, in the same unitary family, which improves the behaviour of the backreaction in such a way that regularization **may not be needed**.