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● Any fundamental theory includes fermionic fields. 

● It is interesting to incorporate fermions in analyses of the Early 
Universe and of possible effects on the primordial perturbations. 

● We want to extend the hybrid LQC  formalism including Dirac 
fields. This will put to the test the very own consistency of the 
hybrid approach. 

● We want to obtain a framework to discuss the effects of quantum 
geometry on realistic quantum matter fields. 

● In this way we can explore issues such as the definition of a 
vacuum, the recovery of QFT, and backreaction.

Motivation



  

● We start with a FLRW model  with flat compact sections (three-
tori).

 

We include a scalar field (the inflaton) subject to a potential 

● The  phase space can be described with two canonical pairs:

1)           for the inflaton. 

 

      

Unperturbed model

(ϕ ,πϕ)

W (ϕ).

ds2=
4π
3 [−( 4π e3α(t )

3 )
2

N 0
2(t )dt2+e2α(t) 0 hij d θi d θ j ] .

Euclidean



  

2)        for the FLRW geometry, adopting the usual description in 
LQC, with             and

The sign of    determines the orientation of the triad.

The volume of the homogeneous sections is 

● The system is subject to a (rescaled) Hamiltonian constraint: 
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● We  perturb  the geometry and the inflaton, and  truncate the 
action at second perturbative order. 

● Using spatial, vector, and tensor  harmonics, constructed from 
the Laplace-Beltrami operator on the spatial sections, we expand 
the perturbations in modes.

● Zero-modes are treated exactly at second perturbative order.

● In this perturbative scheme, the total system is a constrained 
system with a canonical structure.

Non-fermionic perturbations 



  

● Linear perturbative constraints generate perturbative  
diffeomorphisms.   Only perturbative  quantities  not   affected 
by these transformations are physical: 

GAUGE INVARIANTS.

● Tensor perturbations are gauge invariants.

● The Mukhanov-Sasaki invariant is related to the comoving 
curvature (scalar) perturbations.  Its momentum  can be chosen 
proportional to the time derivative.

● One can find momenta  for the linear perturbative constraints, 
that commute with the gauge invariants. 

Non-fermionic perturbations 



  

● In all these considerations, the background  variables (zero-
modes) had been kept fixed.          [Langlois]

● The variables for the perturbations can be completed into a 
canonical set for the whole system.                    [Pinto-Neto]

● Zero-modes are corrected with a fixed quadratic contribution of 
the perturbations. 

The corrected zero-modes  are the genuine free (background) 
variables.

Non-fermionic perturbations 



  

● This correction of the zero-modes modifies the quadratic 
perturbative contribution to the global Hamiltonian constraint. 

The resulting global Hamiltonian constraint is a gauge invariant. 

● This  quadratic perturbative contribution, additional to the 
Hamiltonian of the homogeneous sector, equals the Mukhanov-
Sasaki Hamiltonian          plus the tensor one

● The rest of the total Hamiltonian is a sum of linear perturbative 
constraints, with redefined Lagrange multipliers.

Non-fermionic perturbations 

MS H 2
T H 2 .



  

● We introduce a massive Dirac field

At our truncation order the Dirac field, regarded as a perturbation, 
couples directly with the (corrected) FLRW geometry. 

● Adopting the Weyl representation for the Dirac matrices, we can 
describe the Dirac field by a pair of two-component spinors of 
definite chirality                            that are Grassmann variables.

● In the internal time gauge                   the gauge group reduces to 
SU(2).

                 

The Dirac field 
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● We expand the spinors in eigenmodes of the Dirac operator on the 
spatial sections, with time-dependent anticommuting coefficients:  

                 

● Dirac eigenspinors: 

●     may be any of the vertices of the cube with side ½.

The Dirac field 
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● Eigenmode expansion:  

                 

Eigenvalues:                           each with degeneracy 

● Let us use the same annihilation and creation variables as D'Eath 
& Halliwell. For nonzero-modes, and                   o  

                                            

The Dirac field 
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● Variables:                     or

                 

This choice provides an instantaneous diagonalization  of the 
Dirac Hamiltonian.

● The choice is unique up to unitary transformations if:

The FLRW background is treated classically.

The dynamics of these variables must be unitarily implementable  on 
Fock space.

The Fock vacuum must be invariant under the Killing isometries of the 
spatial sections and the spin rotations generated by the helicity.

The convention of particles and antiparticles must connect smoothly in 
the massless limit with the standard one.             

The Dirac field 
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=√
ξk−ωk
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ȳ
−k⃗ , b̄ k⃗

( x , y):ωk→−ωk ; ξk=√ωk
2
+M 2V 2 /3 .

(x , y)=(m , s) (t , r ).



  

● The D'Eath & Halliwell variables are volume dependent. Hence, the 
FLRW geometric momentum must be corrected to maintain the 
canonical structure:

● Once this volume dependence is taken into account, the 
contribution of the fermionic nonzero-modes to the global 
Hamiltonian constraint becomes 

Fermionic perturbations 
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● For the geometry zero-modes     we adopt the polymeric 
representation of LQC, with superselection of volume states.

● For the inflaton, a conventional Schrödinger representation. 

● For the Mukhanov-Sasaki field, the tensor perturbations, and the 
Dirac field, a Fock representation (selected by unitarity criteria).

● The linear perturbative constraints imply that physical states 
depend only on zero-modes and gauge invariants. 

● Only one relevant constraint remains: the global Hamiltonian 
one.

Hybrid quantization 

(v ,b)

H T=H 0+
MS H 2+

T H 2+∑k⃗
H D

k⃗ .



  

● In Loop Quantum Cosmology, the canonical variables can be 
chosen as the volume variable      proportional to the cube of the 
scale  factor, and the scaled connection           with 

● Only holonomies  of the connection are meaningful. Their 
elements can be expressed in terms of                           

● These holonomies shift the volume in a constant, unit step.

● We adopt a volume  representation with DISCRETE measure. It 
is not continuous. 

● The unperturbed Hamiltonian constraint leaves invariant 
superselection sectors  with volume eigenvalues that differ in  
multiples of 4 units. 

v ,

e±i b/2 .

Hybrid quantization: LQC 

b∝α̇ , {b ,v }=2.



  

● In particular:

● In the fermionic part of the global Hamiltonian:

Products with the volume are symmetrized algebraically.

We represent      by an operator      like       but with double angle.

                   is represented in terms of the volume, using the 
spectral theorem. 

● We adopt normal ordering for creation and annihilation operators.

Hybrid quantization 

2π γ vb Ω̂0=
1

2√Δg

V̂ 1 /2
[ŝign (v)ŝin(b)+ŝin(b)ŝign(v)]V̂ 1/2 .

Ĥ 0=
1
2
(π̂ϕ2−Ĥ 0

(2)) , Ĥ 0
(2)
=

3

4π γ2 Ω̂0
2
−2 V̂ 2W (ϕ̂) ,

vb Λ̂0 Ω̂0 ,

Even power

ξk=√ωk
2
+M 2V 2 /3



  

● We adopt a Born-oppenheimer ansatz, with the inflaton playing 
the role of internal time:

● Approximation: 

No change of FLRW geometry is mediated by the constraint.       

The diagonal element in the FLRW geometry encodes all relevant 
information about the constraint.

Born-Oppenheimer 

Φ=χ0ψ=χ0(V ,ϕ)ψs(N s ,ϕ)ψT (N T ,ϕ)ψD(N D ,ϕ) ,

Fock representationχ0(V ,ϕ)=Û 0(V ,ϕ)χ(V ).

Solution at the considered perturbative order. χ0 :

Û 0 : Evolution operator, with positive ̂̃H 0=[π̂ϕ , Û 0]Û 0
−1 .



  

● With the ansatz                    and our approximation, we obtain a 
quadratic master constraint  for the perturbations, in which the 
quantum effects on the FLRW geometry are incorporated, and the 
homogeneous inflaton appears as an internal time. 

Neglecting some ignorable terms for the scalar perturbations:

Born-Oppenheimer 

Φ=χ0(V ,ϕ)ψ

∣∣χ0∣∣
2
π̂ϕ

2
ψ+〈( ̂̃H 0)

2
−Ĥ 0

(2)
〉χ0
ψ

+2 〈 ̂̃H 0〉χ0
π̂ϕψ=−2 〈 MS Ĥ 2+

T Ĥ 2〉χ0
ψ−2 〈∑k⃗

Ĥ D
k⃗
〉
χ0
ψ.

Schrödinger equation

Possible FLRW contribution

LQC inner product



  

● If the perturbations have a negligible contribution to the inflaton 
momentum compared to the average of the FLRW part, we arrive 
at Schrödinger equations for the different perturbations.

In particular:

● The constraint allows for a backreaction, which can add to zero:

● One can derive equations  of motions for the perturbations 
directly from the master constraint, even without the above 
approximation. 

Born-Oppenheimer 

π̂ϕψD=−
〈∑k⃗

Ĥ D
k⃗
〉
χ0

〈 ̂̃H 0〉χ0

ψD−
C D
(χ)(ϕ)

2 〈 ̂̃H 0〉χ0

ψD .

C s
(χ)
(ϕ)+CT

(χ)
(ϕ)+C D

(χ)
(ϕ)=〈( ̂̃H 0)

2
−Ĥ 0

(2)
〉χ0

.

Expectation values of the geometry



  

● From the master constraint, the fermionic operators satisfy the 
Heisenberg equations:

where the evolution is described in terms of a well-defined 
conformal time that depends on the state of the FLRW geometry

Here:

Fermionic dynamics 

d η â
k⃗
(x , y )(η)=−iF k

(χ) â
k⃗
(x , y)(η)+Gk

(χ)b̂
k⃗
(x , y) †(η) ,

d η b̂
k⃗
(x , y )†(η ,η0)=iF k

(χ)b̂
k⃗
(x , y)†(η)−Gk

(χ) â
k⃗
( x , y)(η).

F k
(χ)
=
〈ξk (V̂ )V̂

2/3
〉χ0

〈 V̂ 2 /3〉χ0

, Gk
(χ)
=M ωk

〈ξk
−1
(V̂ )V̂ 1 /6

Λ̂0 V̂ 1 /6
ξk
−1
(V̂ )〉χ0

2 γ〈V̂ 2 /3〉χ0

.

d η=
〈V̂ 2/3

〉χ0

〈 ̂̃H 0〉χ0

d ϕ .



  

●

● Recall that                    Therefore, fermions couple with an 
infinite sequence of expectation values on the geometry.

● The solution to the Heisenberg equations provides a Bogoliubov 
transformation from the initial operators. 

There is no guarantee that it reproduces a transformation in an 
effective background. 

Fermionic dynamics 

d η â k⃗

(x , y)
(η)=−iF k

(χ) â k⃗

( x , y)
(η)+Gk

(χ) b̂ k⃗

(x , y)†
(η) ,

d η b̂
k⃗

(x , y )†(η ,η0)=iF k
(χ)b̂

k⃗

(x , y)†(η)−Gk
(χ) â

k⃗

( x , y)(η). F k
(χ)
=
〈ξk (V̂ )V̂

2 /3
〉χ0

〈V̂ 2/3
〉χ0

,

Gk
(χ)
=M ωk

〈ξk
−1
(V̂ )V̂ 1/6

Λ̂0 V̂ 1 /6
ξk
−1
(V̂ )〉χ0

2 γ 〈V̂ 2 /3〉χ0

.

ξk (V̂ )=√ωk
2+M 2 V̂ 2/3 .



  

● Let           be the coefficients of the Bogoliubov transformation.

We must have                     We use the parametrization:

● Zero-modes aside,                 solves the fermionic evolution.
     rotates the phase of the operators by               and

 

Quantum evolution 

T̂ B=∑ [Γk â k⃗

( x , y)† b̂ k⃗

( x , y)†
−Γ̄k b̂ k⃗

( x , y) â k⃗

(x , y)
−iρk (â k⃗

( x , y) † â k⃗

( x , y)
+b̂ k⃗

( x , y)† b̂ k⃗

(x , y)
)+ick

( x , y)] .

Phase

(αk ,βk)

eiωk(η−η0)αk=cos Ak+iρk

sin Ak

Ak

,

e−iωk (η−η0)βk=−Γk

sin Ak

Ak

, Ak=√∣Γk∣
2
+ρk

2 .

Û D=Û BÛ F

∣αk∣
2
+∣βk∣

2
=1.

Û F ωk (η−η0)

ρk∈ℝ , Γk∈ℂ .

Û B=e−T̂ B :

k⃗≠0⃗ if τ⃗=0⃗ ;(x , y )∈{(m , s) ,(r , t )}.



  

● The quantum evolution is  unitary  iff  the   -coefficients are 
square-summable. A careful asymptotic analysis proves that: 

● Since the degeneracy goes like                        

The quantum evolution is indeed well-defined and unitary. 

● For large frequency, the  -coefficients are proportional to the 
fermion mass: negligible production of particles.

●

Unitarity 

βk (η)=i
M

4ωk
2 [λ0

(χ)
(η0)e

−iωk (η−η0)−λ0
(χ)
(η)eiωk (η−η0)]+O (ωk

−3
).

β

g k=O(ωk
2):

β

λ0
(χ)=

〈V̂ 1/6 Λ̂0 V̂ 1/6〉χ0

γ 〈V̂ 2/3〉χ0

It vanishes “at the bounce”, 
reducing the particle production



  

● The evolved vacuum is   

● It is an exact solution to the Schrödinger equation if the 
backreaction is

Recall that 

Vacuum evolution 

Û D∣0 〉D= ∏
(x , y) , k⃗

ei [ρk−ck
(x , y)
−ωk(η−η0)] ᾱk [1+βk

ᾱk
â

k⃗
(x , y)† b̂

k⃗
(x , y) † ]∣0 〉D .

C D
(χ)(ϕ)=2 〈V̂ 2 /3〉χ0

∑
(x , y ) , k⃗

[Gk
(χ)ℑ(Γk)+(ck

(x , y))
' ] .

Particle creation

Rotating phasec-number phase

Gk
(χ)=M ωk

〈ξk
−1(V̂ )V̂ 1/6 Λ̂0 V̂ 1/6 ξk

−1(V̂ )〉χ0

2 γ〈V̂ 2/3〉χ0

.   -coefficient

Phase

β



  

●  Backreaction:

● Our asymptotic analysis gives:

● Recalling that the degeneracy is                regularization of the 
backreaction, absorbing the divergent part in the phase, is (barely) 
needed.

● This considerably improves the situation found by D'Eath & 
Halliwell, who got, for each fermionic mode, a contibution 

Vacuum evolution 

Gk
(χ)
ℑ(Δk)=

M 2

8ωk
3 λ0

(χ)
(η)[λ0

(χ)
(η)−λ0

(χ)
(η0)cos[2ωk (η−η0)]]+O (ωk

−4
) .

C D
(χ)(ϕ)=2 〈V̂ 2 /3〉χ0

∑
(x , y ) , k⃗

[Gk
(χ)ℑ(Γk)+(ck

(x , y))
' ] .

g k=O(ωk
2) ,

O(ωk).



  

 Conclusions

● We have completed the hybrid loop quantization  of a perturbed 
FLRW cosmology with scalar and Dirac fields.

● We have deduced a master constraint for the perturbations using 
a Born-Oppenheimer approximation. 

● In the resulting quantum dynamics, the fermions couple with the 
geometry through an infinite number of expectation values.

● We have solved this fermionic quantum dynamics  and proven 
that it is unitary, even if the geometry is a quantum entity. 



  

 Conclusions

● We have shown that the unitarily evolved vacuum for the Dirac 
field is a solution to the associated Schrödinger equation.

● Since the dynamics is unitary, the production of particles  is 
finite. Furthermore, it is negligible for modes of large frequency.

● Backreaction  effects in our vacuum require regularization, but 
the situation is much better than in traditional studies.

● Finally, there exists the possibility of choosing another vacuum, in 
the same unitary family, which improves the behaviour of the 
backreaction in such a way that regularization may not be needed.
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