Seeing elusive protein structures at high resolution: Instrumentation for XFEL crystallography and imaging

Grant Mills SPB/SFX Postdoctoral Scientist

Hamburg DESY, 09 June 2017

The European XFEL

Traditional X-ray sources

Images: https://industry.gov.au http://www.xstruct.ugent.be

Protein structure

 $efined \\ CC_{map} = 1.0$

Nass et al. (2016)

TRM Barends et al. (2014)

R Neutze (2015)

Scattered x-rays is proportional to N² (~ 100 x 100 x 100 elements)

O If N=1, then scattering is proportional to 1 (~ a million times less than above)

Conclusion: Need a lot more x-rays

SASE radiation

FELs offer improvements over 3rd generation synchrotrons

- Orders of magnitude brighter
- Extremely short pulse duration
- Both µm and nm focus

Dr. Grant Mills, EIROforum School of Instrumentation, 22 June 2017

Diffraction before destruction

Image: R. Neutze et al. Nature (2000)

SASE pulse train

Undulator

Undulator

Undulator

Coherent radiation is emitted from 175 m of SASE undulator

- Initial section of undulator produces radiation
- The radiation couples with the electron's to bunch the electrons
- Saturation occurs when the electrons are completely microbunched
- This process greatly amplifies the radiation emitted

12

Radiation damage

Diffraction before destruction (2014) Henry N. Chapman, Carl Caleman, Nicusor Timneanu

Imaging biomolecules and X-ray radiation

Technical Design Report: Scientific Instrument SPB, (2013) A. P. Mancuso, et al.

KB mirror systems

European XFEL

KB mirror systems

European XFEL

KB mirror systems

Design of the mirror optical systems for coherent diffractive imaging at the SPB/SFX instrument of the European XFEL, (2016) Richard J Bean, et al.

Manufacturing achievements

970 x 25 mm clear aperture

- 1.8 nm peak to valley variation
- 2x 50 nm thick polished coatings
 B₄C and Ru
 950 x 10 mm

European XFEL

Compound refractive lenses

Initial operation will use the CRL in the tunnel

- CRL is a repeating structure of parabolic surfaces
- 12 mm diameter
- 2 mm thickness
- Focus to 2.5 µm diameter

Cassette ordering

Initial operation will use the CRL in the tunnel

1, 2, 4, 8, 10, 10

Allows the change of X-ray energy while still maintaining focal location

Interaction region

There are two inline interaction regions, thes 1st upstream region is available day 1

- Day 1 will provide 60 pulses per trai
 10 Hz
- Photons at 8.4 keV
- Pulse energy at 2 mJ
- Pulse duration 43 fs
 - 120° open scattering cone

European XFEL

Sample injection

Many methods have been adopted to deliver sample into the interaction region

Gas Dynamic Virtual Nozzle

- Capillary guides the sample into the interaction region
- Inert gas focuses the jet into a thin stream
- A μm thin jet can be maintained over more than 100 μm distance
- A modified system can also handle viscous solutions

European XFEL

23

Seeing elusive protein structures at high resolution: Instrumentation for XFEL crystallography and imaging

Design study of a microfluidic mixing nozzle in 25 mm nozzle rod

Image: Joachim Schulz, Rita Graceffa, Dennis Ropers

Aerosol injectors

- Injector creates particle beam
- Pressures decrease through the injector nozzle
- Rapid motion of sample

Fixed targets

AGIPD Detectors

- 📕 6 13 keV
- 1 x 10⁴ at 12 keV dynamic range
- **5** σ at 12 keV sensitivity
- Number of storage cells 352
- Can store images at 4.5 MHz

Experiments

Experiments

STRUCTURAL BIOLOGY

A three-dimensional movie of structural changes in bacteriorhodopsin

Time-resolved SFX

Bacteriorhodopsin conformational changes

10 fs long pulses at SACLA

Experiments

Atomic resolution structure of serine protease proteinase K at ambient temperature

- High resolution SFX
- 1.2 Å res proteinase K
- Comparision of SFX and SRX B-factors

32

Experiments

- Two-colour X-ray-pump/X-ray-probe scheme used for studying the molecular fragmentation of XeF₂
- These reactions occur on the fs timescale, perfect for the European XFEL

European XFEL

A Picón, et al 2016 CS Lehmann, et al 2016

Home	Mission	CXI File Format	Browse Data	Resources	Sponsors	Contact Us	
------	---------	-----------------	-------------	-----------	----------	------------	--

Browse Data

- ID 1 Single mimivirus particles intercepted and imaged with an X-ray laser
- ID 2 Single mimivirus particles intercepted and imaged with an X-ray laser
- ID 3 Femtosecond diffractive imaging with a soft-X-ray free-electron laser
- ID 4 High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
- · ID 5 High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
- ID 6 High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
- ID 7 High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
- ID 8 High-resolution x-ray diffraction microscopy of specifically labeled yeast cells
- ID 9 Cryptotomography: reconstructing 3D Fourier intensities from randomly oriented single-shot diffraction patterns
- ID 10 Femtosecond free-electron laser x-ray diffraction datasets for algorithm development-

Deposit Data

If you are interested in depositing data please contact us.

33

In the future we hope to have a more automated way to deposit data.

📰 💻 European XFEL

Acknowledgments: People—the most important components

Sample Environment AGIPD consortium Adrian Mancuso Zunaira Ansari **Richard Bean** Johan Bielecki Carsten Fortmann-Grote Klaus Giewekemeyer **Oliver Kelsey** Felix Lemcke Luis Lopez Morillo **Bradley Manning** Masoud Mehrjoo Marc Messerschmidt Nadja Reimers Adam Round Tokushi Sato Marcin Sikorski Andrew Stawniczy Stephan Stern Britta Weinhausen Patrik Vagovic Prasad Thute

Particular thanks to all European XFEL groups supporting (too many to mention).

European XFEL