G. Robert-Demolaize, A. Drees, BNL

STATUS OF SIMULATIONS FOR THE UA9 EXPERIMENT

SIMULATED LAYOUT

The CRYSTAL experiment is scheduled for early 2009 along LSS5 in the CERN SPS. The bent Si crystal is placed upstream of QF.518; two locations are foreseen downstream of QD.519 for the installation of RP's.

• A 60 cm long secondary tungsten absorber (TAL) is located upstream of QF.520. The crystal configuration will aim at deflecting particles in the horizontal plane so as to dump them on the TAL; practically, the crystal will only intercept particles with X > 0 and give them a transverse angular kick $\Delta X' > 0$.

OPTICS ALONG LSS5

- The crystal will be installed close to a maximum of β_x (GOOD) and an extrema of η_x (BAD). Values of α_x and η'_x are also non negligible...
- For collimation efficiency studies, the crystal will sit at 6 σ_x from the center of the beam; RP1&2 and TAL at $\approx 6.83 \sigma_x$.

BEAM PARAMETERS

	High energy	Unbunched	Bunched
Momentum P [GeV/c]	270	120	120
Tune Qx	26.13	26.13	26.13
Tune Qy	26.18	26.18	26.18
Tune Qs	0.0021	0	0.004
Normalized emittance (at 1 σ) [mm mrad]	1.5	1.5	1.5
Transverse radius (RMS) [mm]	0.67	1	1
Momentum spread (RMS) $\Delta p/p$	2 to 3×10^{-4}	2 to 3×10^{-4}	4×10 ⁻⁴
Longitudinal emittance [eV-s]	0.4	≤0.4	0.4
RF Voltage [MV]	1.5	0	1.5

- Scenario considered in this presentation: 120 GeV bunched beam with N_{part} ~ 1e11.
- At the location of the crystal: $1 \sigma_x = 1.058 \text{ mm}$, $1 \sigma_p = |\eta_x * \Delta p/p| = 0.351 \text{ mm}$!!!
- From W. Scandale & A. Taratin, CERN/AT 2008-21: halo flux will range between 1e2 and 1e4 particles per turn, synchronous to the bunch structure => limit for single particles experiment: can it be reduced ?? Does the instrumentation then still work ??

CRYSTAL MODEL

- In the results presented in the next slides, the following values were used (from W. Scandale & A. Taratin, CERN/AT 2008-21):
 - Ω = 150 µrad,
 - $\theta_{VR} = 22 \mu rad$,
 - $\theta_{RMS} = 10 \mu rad,$
 - $\alpha_{cc} = 20.4 \ \mu rad,$
 - $\lambda_{\rm CC}$ = 56%, $\lambda_{\rm VR}$ = 95 % (taken from RD22).
- The crystal is set up so that channeling is the favored mechanism for the impacting distribution. VR and MCS can also occur.

ROMAN POTS LAYOUT

S. Hasan et al.

- Total detector dead zone for each RP is equivalent to:
 - @ RP1: 0.8 mm = 1.329 σ_x => particles invisible until they reach 8.155 σ_x !!
 - @ RP2: 0.8 mm = 0.802 σ_x => particles invisible until they reach 7.628 σ_x !!
- Dead zone is included in the fast algorithms; dE/dx and RMS kicks from passage through RP material is not, but is foreseen in later versions for full treatment.

PRELIMINARY RESULTS

- Statistics for 100 particles tracked for 100 turns; 6D distribution with a 0.05 σ_x impact parameter on the crystal. All elements are included (crystal, RP1, RP2, TAL). Lattice is described and tracked using the EVOL tracking code (transfer matrices between specified lattice elements).
- Left: crystal aligned for channeling as described in W. Scandale & A. Taratin, CERN/AT 2008-21. Right: crystal is optimized for volume reflection kicks towards the RP's and the TAL. The latter would be the favored mechanism to study the multi-turn physics of a crystal.