QCD Showers beyond leading order

Christian Bauer LBNL & CERN

ATLAS-CMS Monte Carlo Workshop, CERN 04. May 2017

Disclaimer

I have never written a QCD shower and should therefore be considered an outsider to the field. I use my knowledge of QCD and resummation, as well as experience in interfacing with parton showers to give you my personal views on the subject.

I encourage the experts in the audience to add anything I might miss.

Theoretical calculations can be performed in three different limits of field theory

Fixed perturbation theory	$\alpha_s \rightarrow 0$
Logarithmic resummation	$\alpha_s \rightarrow 0$, $\alpha_s L^2$ fixed
Kinematic expansion (parton shower)	$\theta_{ij} \rightarrow 0$

Each expansion important in different regions

Theoretical calculations can be performed in three different limits of field theory

Fixed order perturbation theory

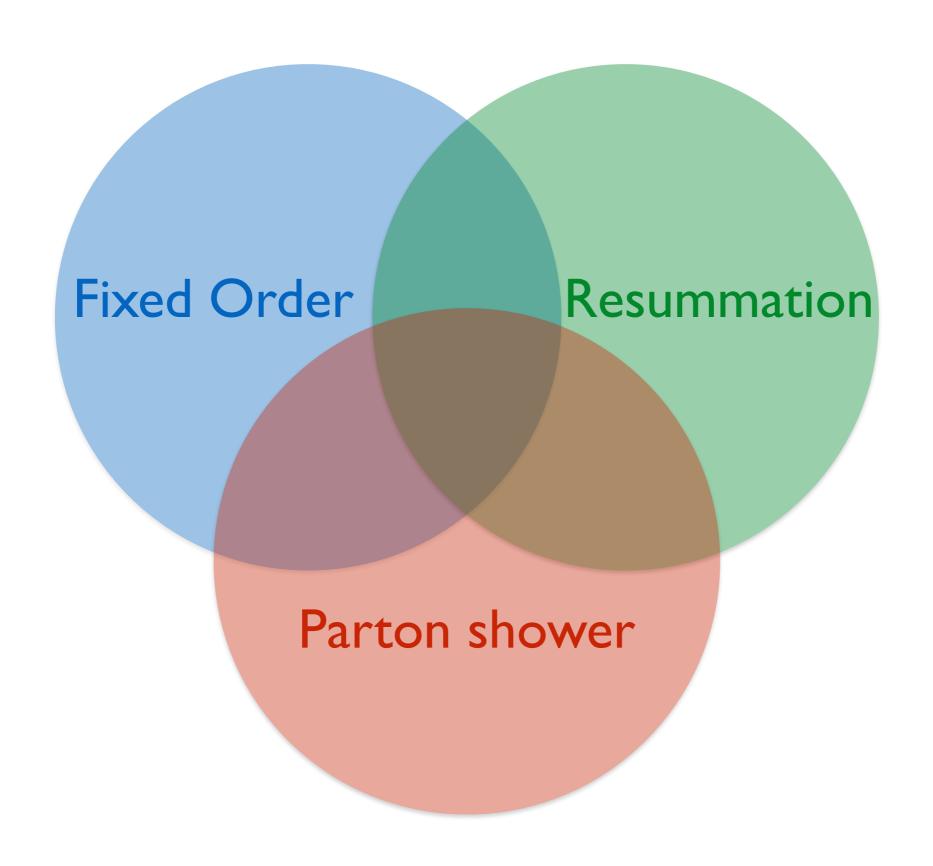
Best precision for inclusive observables (only one relevant scale in problem)

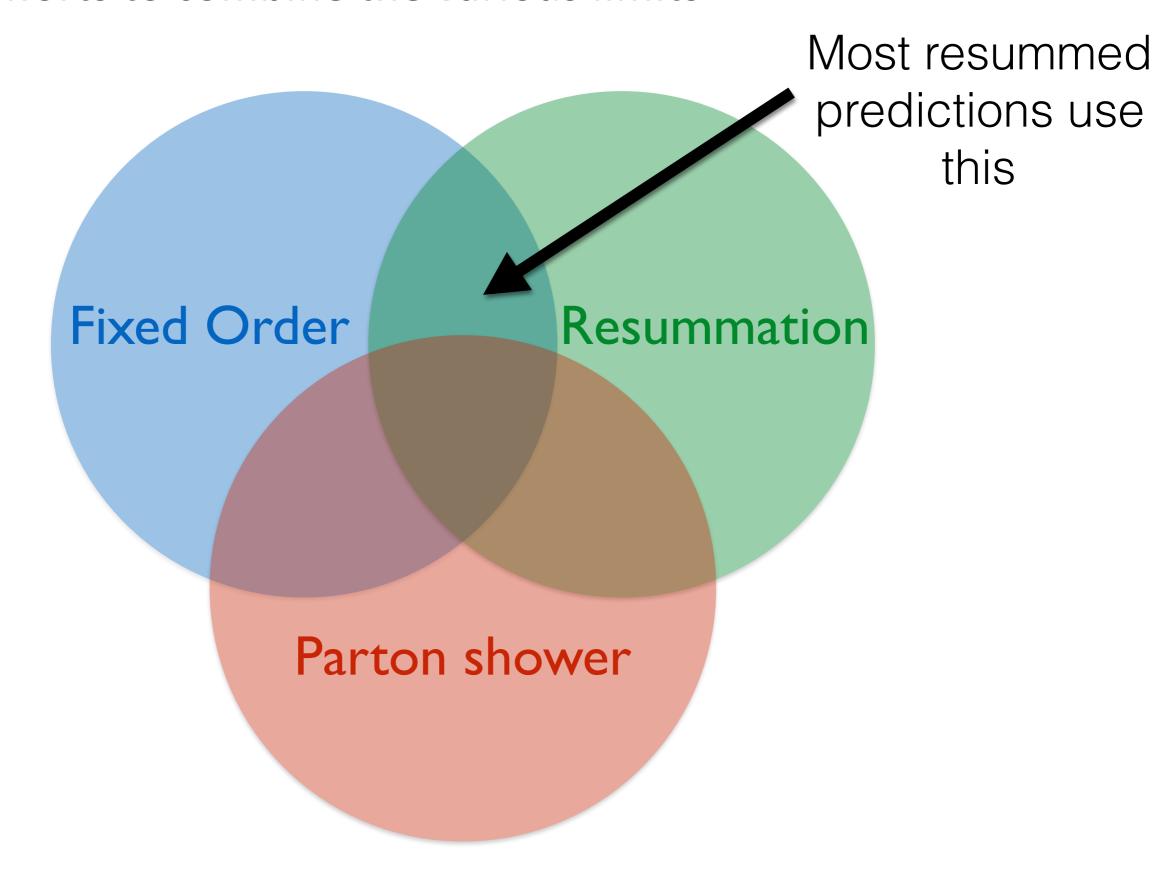
Logarithmic resummation

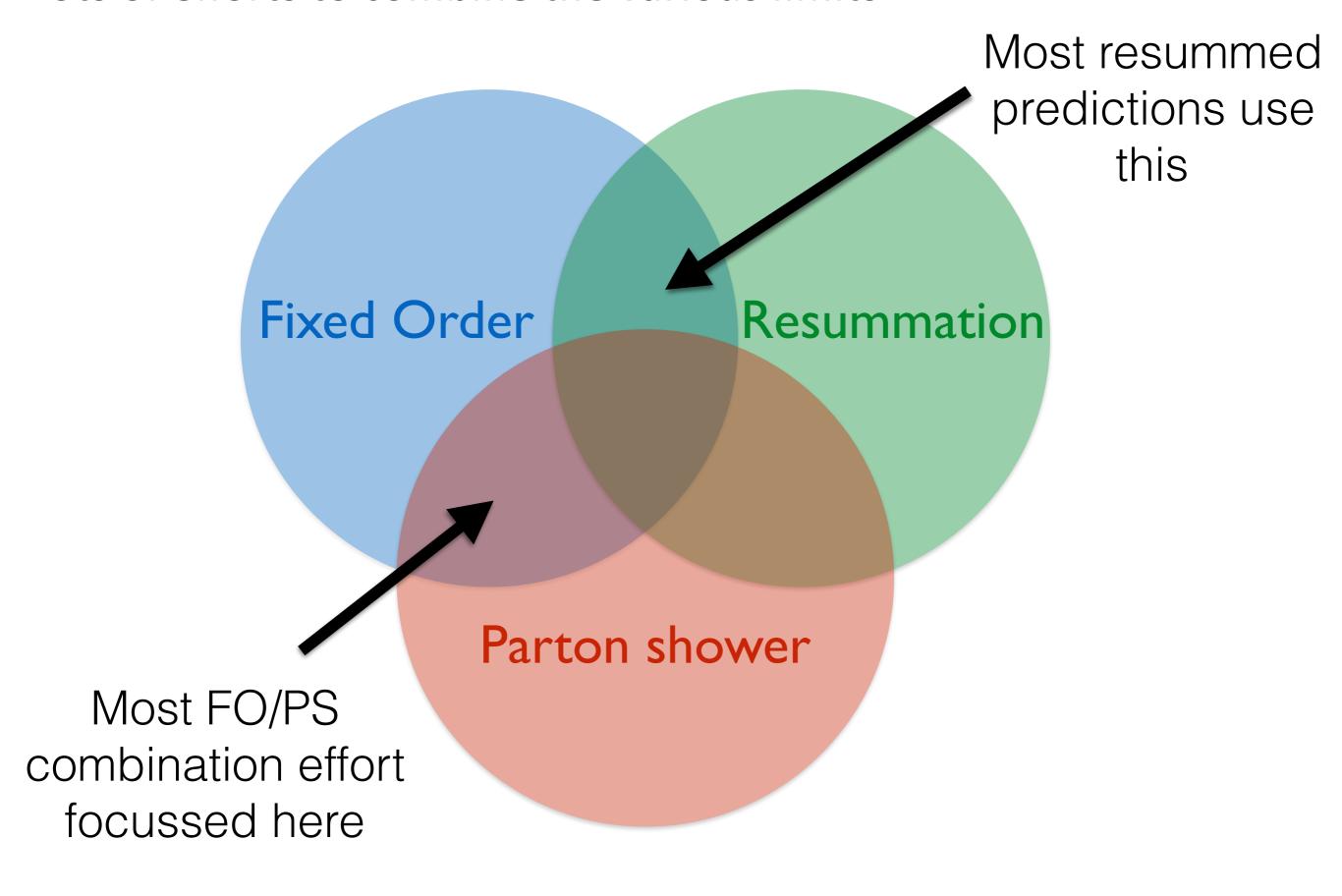
Best precision for semi-inclusive observables (large ratio(s) of scale in problem)

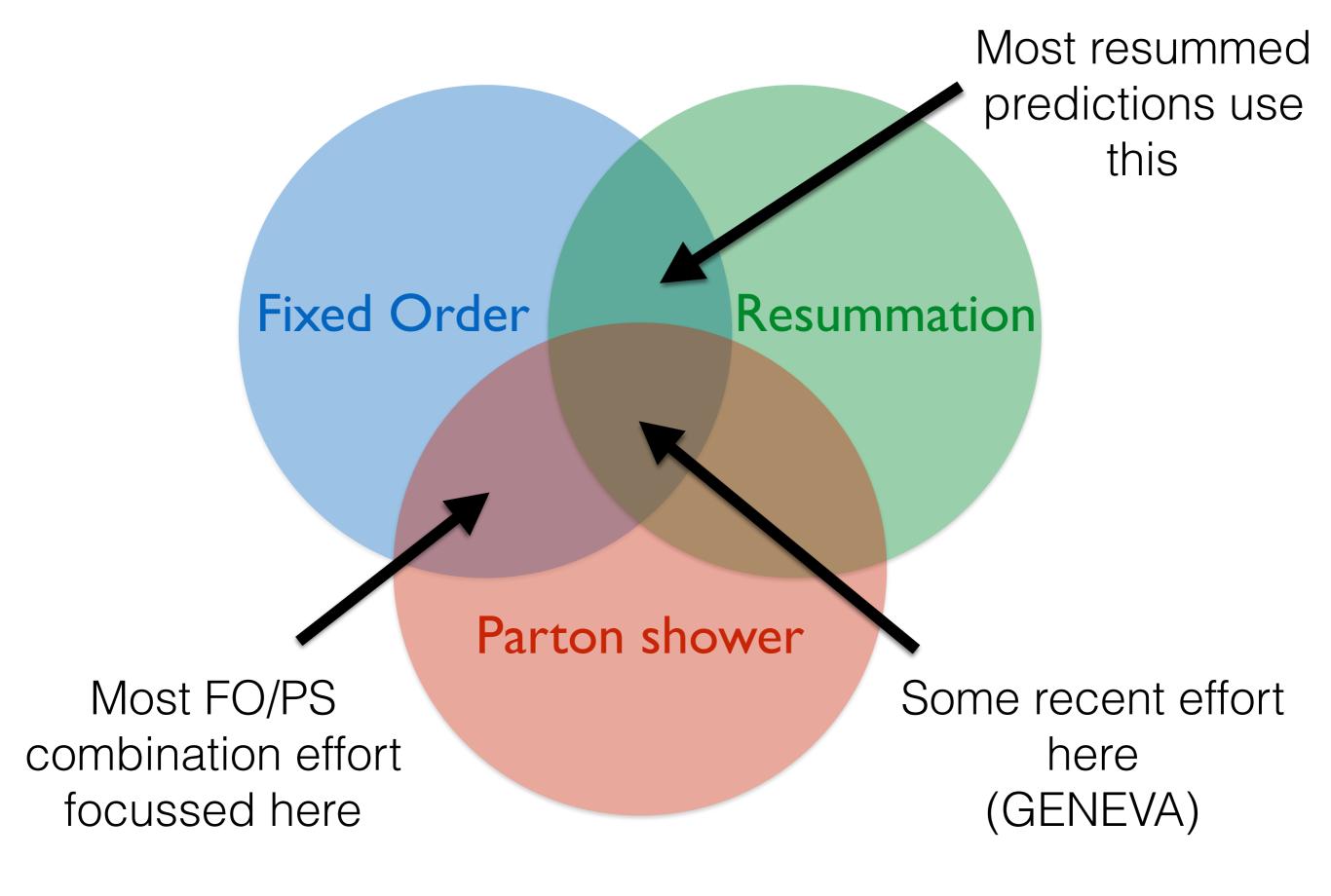
Parton shower

Only tool for events with arbitrary multiplicity (event simulation)

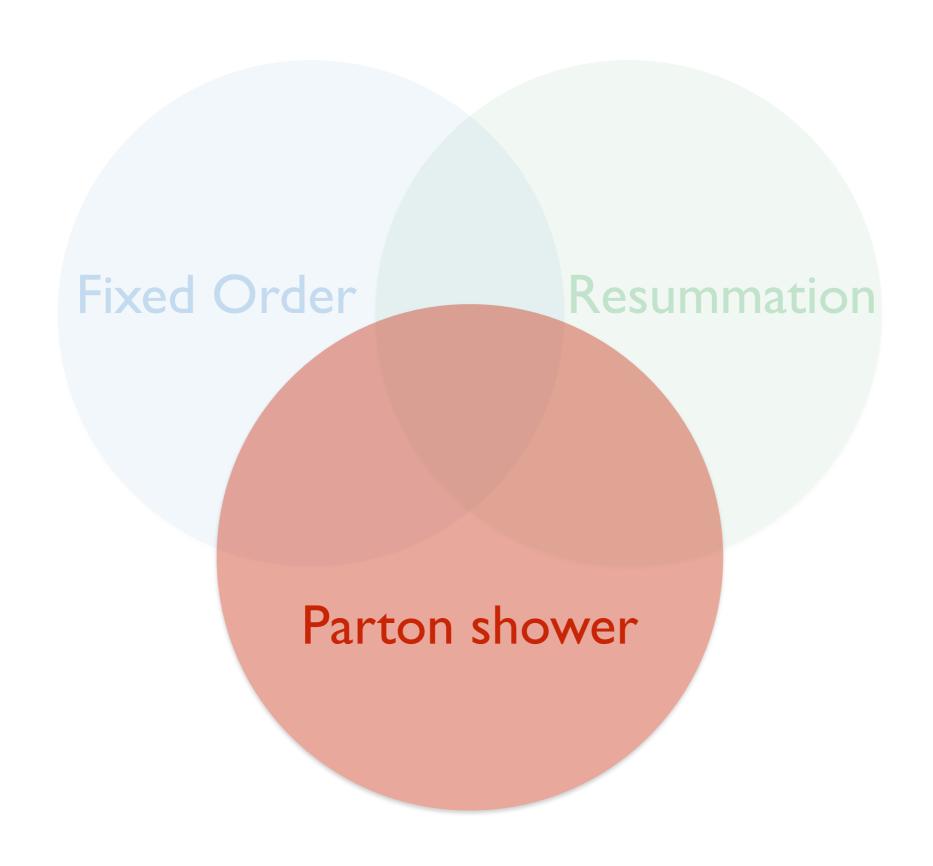


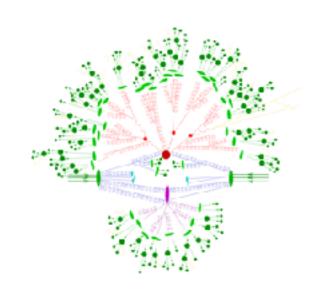




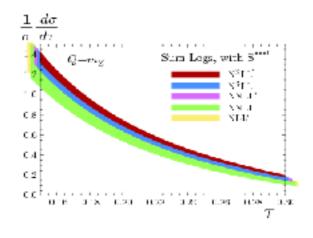


The talk today will only focus on the parton shower

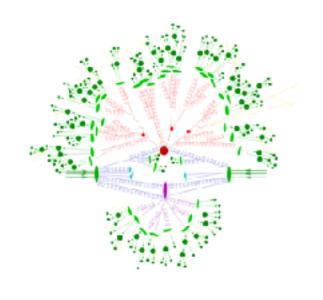




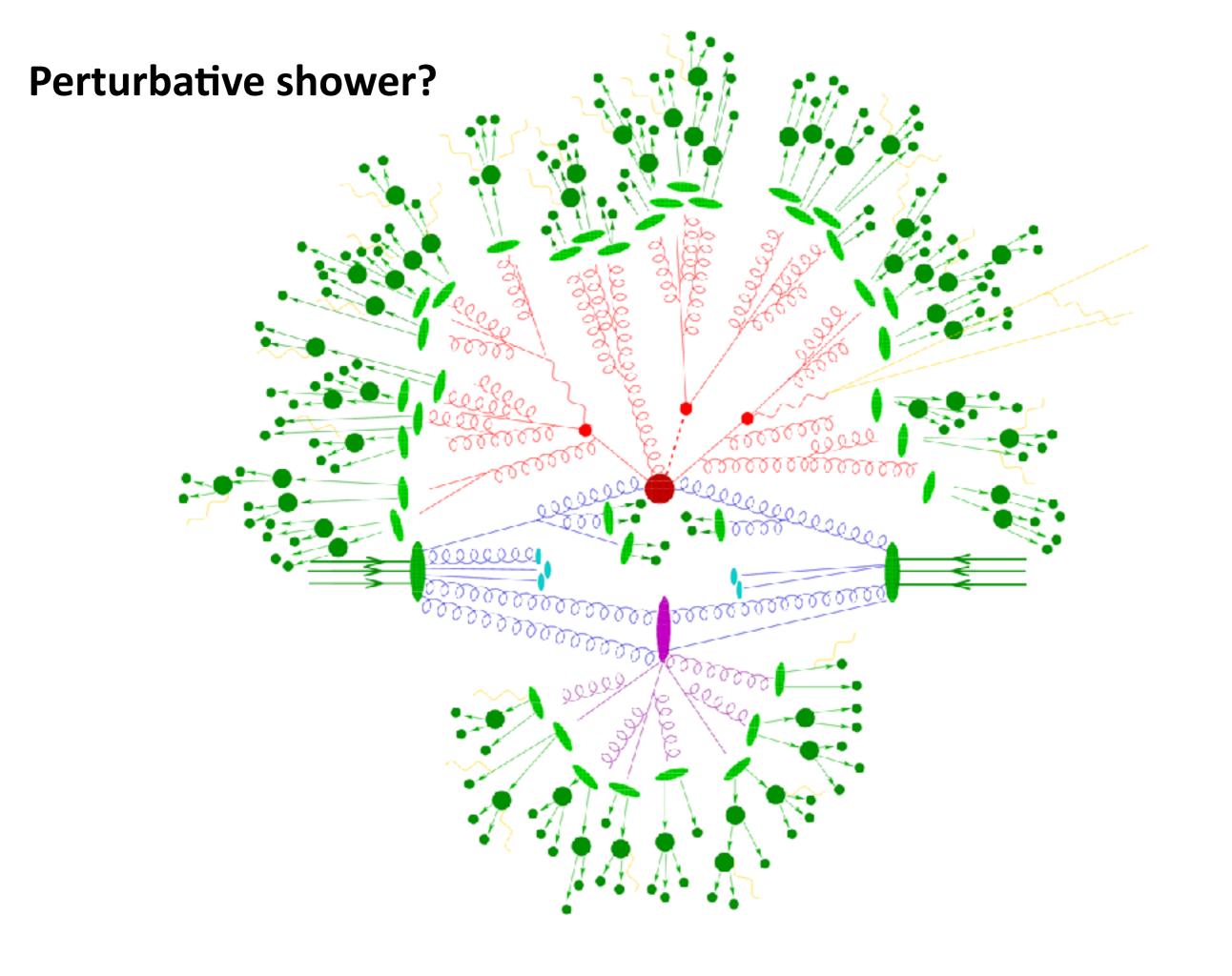
Theory behind perturbative parton showers



Theory behind resummation (Why it is hard to go beyond LL in showers)



Theory behind perturbative parton showers



Perturbative shower?

The basic idea of a parton shower

The basic equation underlying a parton shower is

$$\langle O \rangle = G_N(Q_N, O)$$

<0>: expectation value of observable

G_N: Shower generating functional

N: Multiplicity of hard interaction

Generating functional can symbolically be written as

$$G_N(t,O) = \Pi_N(t,t_c)\langle O\rangle_N + \int_{t_c}^t dt' \,\Pi_N(t,t') \,\mathrm{SP}(t_1) \,G_{N+1}(t',O)$$

This gives recursive definition (with t_c) being shower cutoff

The basic idea of a parton shower

$$G_N(t,O) = \Pi_N(t,t_c)\langle O\rangle_N + \int_{t_c}^t dt' \,\Pi_N(t,t') \operatorname{SP}(t_1) \,G_{N+1}(t',O)$$

Expand recursive definitions to a few orders (with N=2)

$$\langle O \rangle = \Pi_{2}(Q, t_{c}) \langle O \rangle_{2} + \int_{t_{c}}^{Q} dt_{1} \,\Pi_{2}(Q, t_{1}) \,\mathrm{SP}(t_{1}) \,\Pi_{3}(t_{1}, t_{c}) \langle O \rangle_{3}$$

$$+ \int_{t_{c}}^{Q} dt_{2} \,\int_{t_{c}}^{t_{1}} dt_{2} \,\Pi_{2}(Q, t_{1}) \,\mathrm{SP}(t_{1}) \,\Pi_{3}(t_{1}, t_{2}) \,\mathrm{SP}(t_{2}) \Pi_{4}(t_{2}, t_{c}) \langle O \rangle_{4}$$

$$+ \dots$$

A parton shower is probabilistic description that relies on

 $\Pi_N(t,t_c)$: probability that N-body system does not change between t_1 and

 $\mathrm{SP}(t)$: probability of one emission at scale t

Probabilistic evolution requires unitarity

The two main building blocks of a parton shower are

 $\Pi_N(t,t_c)$: probability that N-body system does not change between t_1 and

 $\mathrm{SP}(t)$: probability of one emission at scale t

Probability conservation (unitarity) requires

Pno branch = 1 - Pbranch

This gives a relation between the splitting function and nobranching probability

$$\Pi_N(t, t_c) = \exp\left\{-\int_{t_c}^t dt' \sum_{i=1}^N \mathrm{SP}_i(t')\right\}$$

Probabilistic evolution requires unitarity

$$\Pi_N(t, t_c) = \exp\left\{-\int_{t_c}^t dt' \sum_{i=1}^N \mathrm{SP}_i(t')\right\}$$

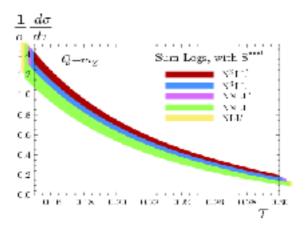
This immediately implies that the no-branching probability is the product of independent Sudakov factors

$$\Pi_N(t, t_c) = \prod_{i=1}^N \Pi^{(i)}(t, t_c)$$

In particular, it is has to be independent of

- The kinematics of event
- The color structure of event

These conditions have to be violated for NLL resummation



Theory behind resummation (Why it is hard to go beyond LL in showers)

The basic idea of resumation

The basic equation underlying a resummed calculation

$$\langle O \rangle = H_N \otimes S_N \otimes \prod_{i \in N} J_i \, \delta \left[O - O(\Phi) \right]$$

<0>: expectation value of observable

H_N: Hard function

S_N: Soft function

J_i: Jet function

O(Φ): measurement function

Each function has to be evaluated at its now characteristic scale, and evolution to common scale resums logarithms

To understand any relation to the parton shower, useful to only keep collinear physics for a moment

$$\langle O \rangle = H_N \otimes S_N \otimes \prod_{i \in N} J_i \, \delta \left[O - O(\Phi) \right]$$

- Jet function depends only on the type of "splitting", and there is one function for each final state particle
- Perturbative expansion of jet function is

$$J_i(t_i) = U_i(Q_N, t_i) + U_i(Q_N, t_i) \operatorname{SP}(t_i) + \dots$$

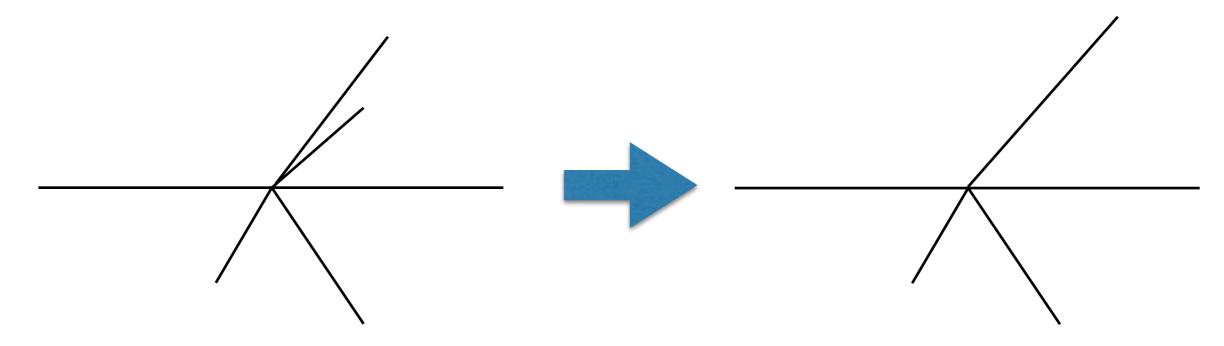
So a single emission starts to look a lot like what a partons shower would give

How about multiple emissions?

To understand any relation to the parton shower, useful to only keep collinear physics for a moment

$$\langle O \rangle = H_N \otimes S_N \otimes \prod_{i \in N} J_i \, \delta \left[O - O(\Phi) \right]$$

The multiplicity of the hard function always depends on the resolution available

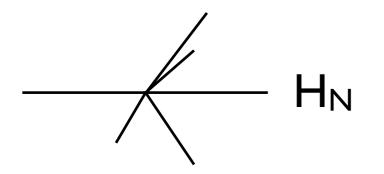


Can be understood quantitively using SCET

To understand any relation to the parton shower, useful to only keep collinear physics for a moment

$$\langle O \rangle = H_N \otimes S_N \otimes \prod_{i \in N} J_i \, \delta \left[O - O(\Phi) \right]$$

$$\begin{array}{c} - \\ \hline \\ H_{N-1} SP(Q_N) \\ \mu = Q_N \end{array}$$



- One-to-one correspondence between resummation and parton shower
- To LL accuracy, resummation reproduces expressions in the parton shower
- Can perform all SCET calculations to higher order and beyond LL

but...

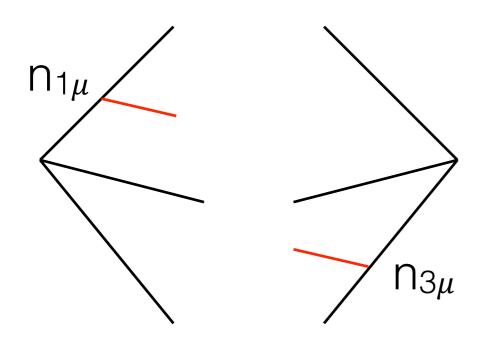
Soft physics complicates the issue considerably

$$\langle O \rangle = H_N \otimes S_N \otimes \prod_{i \in N} J_i \, \delta \left[O - O(\Phi) \right]$$

- 1. Soft interactions come entirely from interference effects
- 2. Both hard and soft functions are matrices in color space
- 3. In general, soft anomalous dimension depends on kinematics of the full N-body final state
- Matching calculations in SCET significantly complicated by presence of soft physics

All these complications start at NLL

Treatment of soft interactions and quantum interference breaks beyond LL



Eikonal coupling of soft particles implies that only interference terms survive in squared amplitudes (n_i²=0)

- Main effect is destructive interference at large angles
- Using angular ordering, interference properly treated
- By using angular veto, most of this effect included

Thus, soft physics can be included in the purely collinear evolution of a parton shower

Beyond LL accuracy, this no longer true

Trivial color structure in the evolution breaks beyond LL

Both soft and hard functions are complicated matrices in color space

$$H_N \otimes S_N \equiv H_N^{\alpha_1 \alpha_2 \dots \alpha_N} \otimes S_{N,\alpha_1 \alpha_2 \dots \alpha_N}$$

- To LL accuracy, matrices are diagonal, and evolution is identical for each element in matrix
- At NLL and beyond, evolution is itself evolution in color space, requiring exponentiation of color matrix

Exponential in NLL resummation needs to depend on color structure of entire event

Anomalous dimension of the soft physics depends on the kinematics of the full N-body kinematics beyond LL

Important requirements for probabilistic shower was independence of no-splitting probability from event kinematics

 $\Pi_N(t,t_c)$: On N (types of particles in event) and scales t, t_c

- At LL, the soft divergences are completely given by the collinear divergences
- Beyond LL, evolution depends on angles between all particles in the event (due to the n_i · n_j)
- While this dependence is known in principle, not clear if / how combined with unitarity

Exponential in NLL resummation needs to depend on kinematics of entire event

There are many subleading effects that parton showers include (any many groups are actively working to including many more)

- All parton showers include running couplings
- Simplest sub-leading terms in splitting functions included for most showers
- Most parton showers do some sort of matching to tree-level
- Using dipole showers or changing evolution variables will change subheading behavior
- Very recent work on using full NLO splitting functions
 Höche, Krauss, Prestel ('17)

While this has improved accuracy of parton showers, systematic improvement over LL still elusive

There are also efforts in the direction of changing the basic idea of the parton shower to maybe go towards NLL in the future

- In a series of papers, Nagy and Soper have outlined a theoretical framework
- Some results using several approximations are available
 Nagy, Soper ('07-now) Plätzer
- Simon Plätzer is also working on an amplitude based shower
- There might be other efforts I am forgetting or am not aware of

So there hope that at some point we could break through the LL barrier.

But I think we need to rethink basic setup