



## ATLAS and CMS Perspectives on MC for SM Higgs Physics

#### ATLAS-CMS MC Generators Worksohp 3<sup>rd</sup> May 2016

#### David Sperka University of Florida

On Behalf of the ATLAS and CMS Collaborations





#### Where We Stood Before Run 2

- The discovery of the 125 GeV Higgs boson was the triumph of LHC Run 1
- No evidence for deviations from the SM, but large uncertainties



- The experiments continue to test the Higgs sector at 13 TeV
  - → Precise measurements of gluon fusion production, including differentially
  - Approaching discovery for of sub-leading production modes
  - → Eventually, combined fits of couplings/cross sections using Run 2 data

#### **Background Modeling**



Speaker: Laura Reina (Florida State University (US))

0.5 0.6 0.7 0.8 0.9 MEM discriminant

35.9 fb<sup>-1</sup> (13 TeV)

700

12.9 fb<sup>-</sup>

tt+cc

tī+2b

V+iets

diboso

single-t

m<sub>4/</sub> (GeV)

900

(13 TeV)

Data

H(125) q**q**→ZZ, Zγ\* gg→ZZ, Zγ\*

Z+X

300

400 500

ATLAS and CMS Perpectives on MC For HIG

David Sperka, on behalf of CMS and ATLAS

10

0.0 0.1 0.2 0.3 0.4

CMS Preliminary

#### V+heavy flavour Background Modeling

- Modeling of V+HF critical for VH(bb) analyses, some tension observed in most recent ATLAS results
- Differences observed between aMC@NLO+Pythia8 and Sherpa, not covered by scale variations



ATLAS and CMS Perpectives on MC For HIG



David Sperka, on behalt of CMS and ATLAS

#### V+heavy flavour Background Modeling

10<sup>2</sup>

ATLAS Simulation Preliminary

s=13TeV

Sherpa v2.2

----- Sherpa v2.2 μ<sub>B</sub>=1.0 μ<sub>E</sub>=0.5

Sherpa v2.2 µ\_=1.0 µ\_=2.0

Sherpa v2.2 µ\_=0.5 µ\_=1.0

- Modeling of V+HF critical for VH(bb) analyses, some tension observed in most recent ATLAS results
- Differences observed between aMC@NLO+Pythia8 and Sherpa, not covered by scale variations



### γ+jet / dijet Background Modeling

- Important for MVA training in  $H \to \gamma \gamma$  analysis (diphoton BDT and dijet BDT)
- Most challenging in VBF phase space to obtain sufficient statistics
- CMS currently uses Pythia8, filtered at for jets with excess of EM particles





- Interested in γ+jet aMC@NLO with FxFx matching if/when it becomes available
- Sherpa+OpenLoops also an option

#### **Higgs Boson Production Modes**

• Monte Carlo samples are normalized to best available theory calculations:



ATLAS and CMS Perpectives on MC For HIG

- Several generators are used in ATLAS and CMS for simulating gluon fusion production
  - Powheg (0-jet @ NLO): first jet at LO, additional jets from parton shower. Imperfect modeling of jet activity and  $p_{T}(H)$ , but can be tuned using generator parameters (e.g. hfact) to try and match e.g. HRes
  - → aMC@NLO (NLO merged (FxFx) 0,1,2 jets @NLO)
  - → Powheg NNLOPS: (inclusive NNLO, 1j @NLO)
- In Run 1, distributions were reweighted:  $p_T(H)$  to match HRes 2.3 (dynamic scale) and N(jets) to match higher order calculations

 $\rightarrow$  In Run-2 goal is to not have to apply any reweighting

• MC Generators have been compared to state of the art parton level / analytical predictions to ensure their accuracy

- Inclusive cross sections for different jet multiplicities computed by hadron level event generators compared to parton level calculations
  - → NNLOPS agrees well with higher order calculations for all jet multiplicity
  - → aMC@NLO prediction is low for lower jet multiplicity (only NLO)
  - → Pretty good agreement for both generators when  $N(jets) \ge 2$



- Higgs rapidity spectrum important for estimating experimental acceptance
- NNLOPS matches HNNLO prediction by construction, aMC@NLO has a different shape especially at large y, where NNLO corrections are larger
  - → Only matters for extrapolation to full phase space (i.e. total cross section)



### Gluon Fusion Signal Modeling: p<sub>T</sub>(H)

- $p_{\tau}(H)$  spectrum also important for determining acceptance, as well as testing for presence of BSM particles in the loop
- NNLOPS agrees well with higher order calculations, even at low  $p_{\tau}$  where it is not formally NNLL and at high  $p_{\tau}$  where it is only NLO for H+1jet



- $p_{T}(H)$  spectrum also important for determining acceptance, as well as testing for presence of BSM particles in the loop
- NNLOPS agrees well with higher order calculations, even at low  $p_{\tau}$  where it is not formally NNLL and at high  $p_{\tau}$  where it is only NLO for H+1jet



David Sperka, on behalf of CMS and ATLAS

#### **Gluon Fusion in Exclusive Jet Bins**

- Exclusive jet bin predictions and uncertainties are important for channels which categorize events based on jet multiplicity (e.g. WW, ττ)
- Predictions for higher jet multiplicities also extremely important for measurement of VBF production (ggH is an irreducible background)





#### H(WW): ATLAS-CONF-2016-112

| Source                                           | $\Delta \mu_{\rm VBF}/\mu_{\rm VBF}$ [%] |
|--------------------------------------------------|------------------------------------------|
| Statistical                                      | +60 / -50                                |
| Fake factor, sample composition                  | +18 / -15                                |
| MC statistical                                   | $\pm 15$                                 |
| VBF generator                                    | +14 / -5                                 |
| WW generator                                     | +11 / -7                                 |
| QCD scale for ggF signal for $N_{\rm jet} \ge 3$ | +8 / -7                                  |
| Jet energy resolution                            | +8 / -7                                  |
| b-tagging                                        | +8 / -6                                  |
| Pile-up                                          | +8 / -6                                  |
| QCD scale for ggF signal for $N_{\rm jet} \ge 2$ | $\pm 6$                                  |
| JES flavour composition                          | +6 / -4                                  |
| WW renormalisation scale                         | $\pm 5$                                  |
| Total systematic                                 | +33 / -26                                |
| Total uncertainty                                | +70 / -50                                |

ATLAS and CMS Perpectives on MC For HIG

David Sperka, on behalf of CMS and ATLAS

#### **Gluon Fusion in Exclusive Jet Bins**

- Again, pretty good agreement with higher order calculations even for larger jet multiplicities, while aMC @NLO is a bit low for lower jet multiplicities
- Estimation of migration uncertainties is important, e.g. using JVE or ST approaches, standard uncertainties from scale variations unreliable
- More studies welcome on modeling of kinematic distributions in jet bins



#### **Discussion items on NNLOPS**

- We have seen that NNLOPS agrees well with state of the art calculations, and ATLAS and CMS plan to use it as the baseline for future measurements
- Comparison between the experiments have achieved good synchronization

Stage-1 subprocess cross sections from NNLOPS (pb). Uncertainties are statistical uncertainties only.

| Subprocess | CMS               | CMS+ATLAS PS Tune | ATLAS            |
|------------|-------------------|-------------------|------------------|
| FWDH       | $4.27 \pm 0.056$  | $4.27\pm0.057$    | $4.27 \pm 0.01$  |
| VBF_J3V    | $0.23\pm0.01$     | $0.27\pm0.011$    | $0.27\pm0.00$    |
| VBF_J3     | $0.41 \pm 0.013$  | $0.37\pm0.012$    | $0.36\pm0.00$    |
| 0J         | $26.85 \pm 0.134$ | $26.95 \pm 0.133$ | $27.25 \pm 0.03$ |
| 1J_0-60    | $6.58\pm0.059$    | $6.61\pm0.059$    | $6.49\pm0.01$    |
| 1J_60-120  | $4.54 \pm 0.046$  | $4.58 \pm 0.046$  | $4.50\pm0.01$    |
| 1J_120-200 | $0.75 \pm 0.017$  | $0.75\pm0.017$    | $0.74\pm0.00$    |
| 1J_200     | $0.14 \pm 0.007$  | $0.17\pm0.008$    | $0.15\pm0.00$    |
| 2J_0-60    | $1.29 \pm 0.025$  | $1.24\pm0.024$    | $1.22\pm0.01$    |
| 2J_60-20   | $1.97\pm0.029$    | $1.89\pm 0.029$   | $1.86\pm0.01$    |
| 2J_120-200 | $1.08 \pm 0.02$   | $1.0 \pm 0.02$    | $0.99\pm0.00$    |
| 2J_200     | $0.43 \pm 0.012$  | $0.43\pm0.012$    | $0.42 \pm 0.00$  |

- Parton shower tune differences lead to significant differences in VBF phase space, should be investigated further
- Technical point: good agreement only when generating large number of events per job, a challenge for production of high statistics samples

ATLAS and CMS Perpectives on MC For HIG

#### Fiducial Cross Section Measurements

- Measurements of model independent fiducial cross sections, fiducial volume closely matching experimental acceptance
  - → Not sensitive to production mechanism, but expected to be dominated by gluon fusion
  - Decouple uncertainties on the signal cross section from the measurement uncs.



ATLAS and CMS Perpectives on MC For HIG

**CMS** Supplementary

Data (best-fit m,)

- acc. AMC@NLO

norm, LHC Higgs XSWG YR4

10

 syst. uncertainty SM (m<sub>u</sub>=125.09 GeV)

Η→γγ

**100** m

90

**80** 

70

60

50

40

30

**20**<u>⊢</u>

σ<sup>fid.</sup> (fb)

David Sperka, on behalf of CMS and ATLAS

- We have seen new results on differential cross section measurements at 13 TeV in ZZ (CMS) and yy (CMS and ATLAS)
- Comparisons to Powheg and aMC@NLO (CMS) and NNLOPS (ATLAS) show no significant deviations so far
- Combinations between the channels and experiments are possible assuming acceptance factors from theoretical calculations



- ATLAS has also measured differential cross sections vs y(H) and cosθ\*
  Sensitive to the parton distribution functions of the colliding protons, production mechanism, and anomalous couplings of the Higgs
- No significant deviations observed so far



- Exclusive jet cross sections measured by both ATLAS and CMS, ATLAS also measured inclusive cross sections for different jet multiplicity requirements
- ATLAS observes slight deficit in 0-jet bin (still compatible with SM prediction), not seen by CMS
- Experimental uncertainties surpassing NLO theoretical unc., especially for 0-jet bin
  - → NNLO needed





David Sperka, on behalf of CMS and ATLAS

35.9 fb<sup>-1</sup> (13 TeV)

 $\geq$  3

m<sub>u</sub> = 125.09 GeV

N3I O+JVF + XH

NNLOJET + XH XH = VBF + VH + ttH

STWZ. BLPTW + XH

GoSam+Sherpa + XH Powheg NNLOPS + XH

anti  $k_t R = 0.4, p_{T} > 30 \text{ GeV}$ 

≥ 3

Niets

19

N3LO + XH

N(jets)

2

🖸 🗳 i 😰 🖸

≥2

- ATLAS and CMS also measure the differential cross section vs.  $p_{\tau}$  of the leading jet, sensitive to higher order QCD effects, potential BSM
- No significant deviations observed so far



- ATLAS has also measured differential cross sections in H+2 jet phase space for  $m_{jj}$  and azimuthal difference between the two jets  $\Delta \Phi_{jj}$ 
  - $\rightarrow$  SM cross section starts to be dominated by VBF at high m<sub>ii</sub>
- Some difference in shapes, but compatible within current uncertainty



#### Interference Effects in Gluon Fusion

- The Higgs boson production cross section has a significant off-shell component in the diboson decay channels
- Furthermore there is interference with the gg  $\rightarrow$  ZZ continuum background, which provides sensitivity to the Higgs boson width
- Interference effects are simulated at  $\alpha_S^2$ , lower than signal only
  - Large K-factors applied to background and interference terms



#### Width Measurement from Off-Shell Region

- The Higgs width has been remeasured at 13 TeV by CMS using the 12.9 fb<sup>-1</sup> in the  $ZZ \rightarrow 4\ell$  decay channel using combination of on-shell and off-shell tail
- Best fit of width slightly broader than expected, opposite to Run 1 result



### **VBF Signal Modeling**

- Both ATLAS and CMS use Powheg+Pythia8 (aMC@NLO for cross checks)
- VBF in H(WW) ATLAS ICHEP results:

| Source                                           | $\Delta \mu_{\rm VBF}/\mu_{\rm VBF}$ [%] |
|--------------------------------------------------|------------------------------------------|
| Statistical                                      | +60 / -50                                |
| Fake factor, sample composition                  | +18 / -15                                |
| MC statistical                                   | $\pm 15$                                 |
| VBF generator                                    | +14 / -5                                 |
| WW generator                                     | +11 / -7                                 |
| QCD scale for ggF signal for $N_{\rm jet} \ge 3$ | +8 / -7                                  |

#### ATLAS-CONF-2016-112

- VBF modeling uncertainty rather important for H → WW systematic model:
  Mainly coming from "ME" uncertainty estimated from generator comparison (Powheg vs aMC@NLO, matched to the same parton-shower)
- Full understanding of this source of uncertainties not trivial (different effects encoded in the comparison): not trivial treatment of 2-point systematics
- From Run-1 analyses (H  $\rightarrow$  tt, H  $\rightarrow$  WW) we also know that PS systematics play an important role in VBF selections

#### **VBF NNLO Corrections**

- Experiments would like to profit from computations of fully differential NNLO QCD + NLO EWK cross sections, likely via 1D reweighting of NLO samples
- Discussions ongoing to determine the appropriate variable and phase space



ATLAS and CMS Perpectives on MC For HIG

David Sperka, on behalf of CMS and ATLAS

#### **VBF** Measurements at 13 TeV



ATLAS and CMS Perpectives on MC For HIG

David Sperka, on behalf of CMS and ATLAS

#### Vjj Measurements at 13 TeV

- LO Madgraph generation of EW Zjj
  → ~5% agreement with VBFNLO
- Suppression of additional jet activity in the signal enhanced region observed
  - Additional jets provided by the Parton Shower





ATLAS and CMS Perpectives on MC For HIG

### **VH Signal Modeling**

- Both ATLAS and CMS use Powheg(MiNLO)+Pythia8
- VH modeling unc. smaller than experimental unc., but interesting to note:
  - EWK corrections not simulated in the MC, applied by reweighting
  - $\textbf{\textbf{+}}$  gg  $\rightarrow$  ZH has a large uncertainty, improvement would be nice
  - Parton-shower modeling already has sizable impact on signal uncertainties

| Signal                                  |                                                                                        |  |  |
|-----------------------------------------|----------------------------------------------------------------------------------------|--|--|
| Cross section (scale)                   | $0.7\%~(q\overline{q}),~27\%~(gg)$                                                     |  |  |
| Cross section (PDF)                     | $1.9\% (q\overline{q} \rightarrow WH), 1.6\% (q\overline{q} \rightarrow ZH), 5\% (gg)$ |  |  |
| Branching ratio                         | 1.7~%                                                                                  |  |  |
| Acceptance (scale)                      | $1.4\%	extsf{}5\%$                                                                     |  |  |
| 3-jet acceptance (scale)                | 1.4% – 4.7%                                                                            |  |  |
| $p_{\rm T}^V$ shape (scale)             | S                                                                                      |  |  |
| Acceptance (PDF)                        | $0.3\% \!\!-\!\! 0.7\%$                                                                |  |  |
| $p_{\rm T}^V$ shape (NLO EW correction) | S                                                                                      |  |  |
| Acceptance (parton shower)              | 4%– $7.5%$                                                                             |  |  |

#### VH(bb): ATLAS-CONF-2016-091

- → Dealing with this source of uncertainty is not trivial:
  - Variations in dedicated experimental tune parameters
  - 2-point comparison among PS (e.g. Pythia vs Herwig)
  - New possibility: internal weights for PS parameter variations  $\frac{1605.08352}{1000}$
- Discussion: How to accurately determine these uncs./properly use new tools?

### **VH Signal Modeling**

NNLOPS simulation of VH also available, not yet used by the experiments
 Some difference in shapes of relevant distributions, smaller uncertainties



### ttH Signal Modeling

- ATLAS uses aMC@NLO+Pythia8, CMS uses aMC@NLO and Powheg + Pythia8, depending on the channel
- Currently background modeling dominates, but signal modeling is also important:

#### ttH(combination): ATLAS-CONF-2016-088

| Uncertainty Source                                                      | $\Delta \mu$ |       |
|-------------------------------------------------------------------------|--------------|-------|
| $t\bar{t} + \ge 1b$ modelling                                           | +0.34        | -0.33 |
| Jet flavour tagging                                                     | +0.19        | -0.19 |
| Background model statistics                                             | +0.18        | -0.18 |
| $t\bar{t} + \geq 1c$ modelling                                          | +0.17        | -0.17 |
| Jet energy scale and resolution                                         | +0.18        | -0.18 |
| $t\bar{t}H$ modelling                                                   | +0.20        | -0.13 |
| <i>tī</i> +light modelling                                              | +0.14        | -0.14 |
| Other background modelling                                              | +0.16        | -0.15 |
| Fake lepton uncertainties                                               | +0.11        | -0.12 |
| Jet-vertex association, pileup modelling                                | +0.09        | -0.09 |
| Luminosity                                                              | +0.09        | -0.09 |
| $t\bar{t}Z$ modelling                                                   | +0.08        | -0.07 |
| Light lepton ( $e$ , $\mu$ ), photon, and $\tau$ ID, isolation, trigger | +0.04        | -0.04 |
| Total systematic uncertainty                                            | +0.57        | -0.54 |
| $t\bar{t} + \geq 1b$ normalisation                                      | +0.24        | -0.24 |
| $t\bar{t} + \geq 1c$ normalisation                                      | +0.11        | -0.11 |
| Statistical uncertainty                                                 | +0.38        | -0.38 |
| Total uncertainty                                                       | +0.69        | -0.66 |

- MC studies (ATLAS-CONF-2016-005 and YR4) show that PS variations have a sizable effects on the shape of relevant ttH variables.
  - Difference between Pythia8 and Herwig++ larger than tune variations



ATLAS and CMS Perpectives on MC For HIG

# Conclusions

- MC Tools used by ATLAS and CMS have progressed greatly since Run 1
  - NLO generators for all production modes
  - NNLO generation for gluon fusion
- Experimental accuracy for differential cross sections approaching theoretical uncertainty
  - Dominated by gluon fusion
  - Subleading production modes are next
- Previously sub-dominant uncertainties may soon become dominant (e.g. PS variations)

# • Experiments are always interested in more accurate predictions!

ATLAS and CMS Perpectives on MC For HIG