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IntroIntroduction

Recent measurements from ATLAS and CMS 

• Differential cross-section measurements. 

Comparison of results 

• Differential cross-sections from Run-1. 

• Prospects for Run-2 combinations. 

Tuning studies from ATLAS and CMS 

• CMS studies on showers. 

• Recent ATLAS Tuning studies.
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IntroInclusive cross-section

• Inclusive cross-sections at 5 energies!
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Intro

Current Status 

• MC modelling uncertainties are typically either the 

dominating, or at least a significant, source of 

systematic uncertainty. 

• ATLAS and CMS deal with these in different ways 

(some harmonisation in Run2 relative to Run1). 

• Important point for most of this talk:  

Better Tuning = Better Experimental Results!

Systematic uncertainties
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Intro

Core Concept 

• Assume we can factorise MC modelling 

uncertainties into several categories:

Systematic uncertainties

Matrix Element

Hadronisation

Non-perturbative

Modelling of hard process

Parton shower and hadronisation

Soft effects (e.g. Colour reconnection)

Scale Renormalisation and Factorisation

PDF Parton Distribution Functions
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Intro
ATLAS Prescriptions 

• Uses either two-point systematic comparison or parameter 

variations. 

Systematic uncertainties

Matrix Element

Hadronisation

Non-perturbative

Scale

PDF Envelope method

POWHEG -vs- MC@NLO

Other Mass variations depending on analysis 

RUN 1 RUN 2

POWHEG -vs- MG5_aMC@NLO

A14 Tunes

HERWIG++(7) -vs- PYTHIA6(8)

Perugia Tunes

PDF4LHC eigenvectors

HERWIG++ -vs- PYTHIA6

POWHEG μR, μF,  hdamp variations
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Intro
CMS Prescriptions 

• Tricky to make definitive list, prescriptions vary with √s, 

time, and analyses. 

Systematic uncertainties

Matrix Element

Hadronisation

Non-perturbative

Scale MG5 Q2 variations

PDF CT10 variations

Threshold variatons.

POWHEG -vs- MG5

Other

POWHEG μR, μF variations

POWHEG -vs- FxFx

ME - PS hdamp variations

b-frag., semi-leptonic B decays, 
HW6 vs PY6 JER

CUET2P8M4

HERWIG++ -vs- PYTHIA8

Tune variations

CT14/NNPDF30 variations

RUN 1 RUN 2

Mass variations and pT(t) reweighting 
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Intro

CMS Differential Measurements
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IntroDifferential Cross-Sections

1) 13 TeV e/µ + jets:                          [Submitted to PRD]  

• Particle level, experimental phase-space. 

• Parton level, full phase-space. 

• top, tt̅ kinematics vs njets (single and double diff.) 

• Focus on MC modelling. 

2) 8 TeV eµ + jets:                            [Submitted to EPJC] 

• Parton level, full phase-space, double differential. 

• Focus on PDF interpretations.

Not an exclusive list!

https://arxiv.org/pdf/1610.04191.pdf
https://arxiv.org/pdf/1703.01630.pdf
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Intro13 TeV e/µ + jets

Top pT modelling (Parton Level):

• Difference between pT(th) and pT(tl) p-values. 

• Many generators failing to describe high pT 

behaviour (comparisons/discussion to follow).
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Intro13 TeV e/µ + jets

Top pT modelling (Particle Level):

• Similar conclusions from particle level. 

• No single ME Generator + Shower combination 

fully describing behaviour.
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Intro13 TeV e/µ + jets

Top pT modelling (Particle Level):

• Measured with 0,1,2,3+ additional jets 

• Some interesting shape changes as Njets is probed 

(e.g. POWHEG P8 in 0 jets vs 1 additional jets).
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Intro13 TeV e/µ + jets

Top pT modelling (Particle Level):

• Measured with 0,1,2,3+ additional jets 

• Some interesting shape changes as Njets is probed 

(e.g. POWHEG P8 in 0 jets vs 1 additional jets).
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Intro8 TeV eµ + jets

Normalised Parton-level cross-sections

• |y(tt̅)| vs. M(tt̅) directly probing sensitivity to PDFs
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Intro8 TeV eµ + jets

Normalised Parton-level cross-sections

• Directly probing sensitivity to PDFs
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Intro8 TeV eµ + jets

Impact on the gluon PDF:

• tt̅ xsec and DGLAP evolution at NLO. 

• 5 flavour (Mb=4.5 GeV, Mc=1.47 GeV). 

• Double diff. provides more constraining power. 

• Consistent with dijet results.
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Intro

ATLAS Differential Measurements
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IntroDifferential Cross-Sections

1) 13 TeV e/µ + jets:                                     [Preliminary]  

• Particle level, experimental phase-space. 

• hadronic top kinematics. 

2) 13 TeV eµ + jets:                           [Submitted to EPJC] 

• Particle level, experimental phase-space. 

• Jet kinematics and gap fractions. 

3) 13 TeV eµ:                                      [Submitted to EPJC] 

• Particle level, experimental phase-sapace. 

• Top and tt̅ kinematics compared to MC predictions.

https://arxiv.org/pdf/1610.09978.pdf
https://arxiv.org/pdf/1612.05220.pdf


Jay Howarth 19

Intro13 TeV eµ + jets and e/µ + jets

Top pT modelling (Particle Level):

• As with CMS, generators struggling to describe 

pT(t) shapes (especially the slope).

dilepton l+jets
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Intro13 TeV eµ + jets and e/µ + jets

Top pT modelling (Particle Level):

• As with CMS, generators struggling to describe 

pT(t) shapes (especially the slope).

dilepton l+jets

• Disclaimer: These are early 13 TeV results, more 

advanced generator usage and studies coming 

later.
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Intro

• Things a little better for some tt̅ observables, but 

some setups clearly disfavoured.

M(tt̅) modelling (Particle Level):

13 TeV eµ + jets and e/µ + jets

dilepton l+jets
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Intro13 TeV eµ + jets

• Problems become more obvious in jet activity.

Top pT modelling (Particle Level):
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Intro

ATLAS + CMS Comparisons
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Intro LHCTopWG

Top at NNLO:

• NNLO predictions necessary to describe top kinematic 
distributions (for discussion…)

Higher order corrections

Czakon, Haymes, 
Mitov (2015) 

https://arxiv.org/pdf/1511.00549.pdf
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Intro LHCTopWG

Top pT comparison:

• Work ongoing to understand compatibility 

between ATLAS and CMS.

8 TeV e/µ + jets
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Intro LHCTopWG

m(tt̅) comparison:

• Similar situation in m(tt̅), understanding of 

correlations between analyses is crucial. 

8 TeV e/µ + jets
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Intro LHCTopWG

m(tt̅) comparison:

13 TeV?

• ATLAS and CMS at 13 TeV see similar trends with 

data when using comparable generators.

TOP-2016-007
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Intro LHCTopWG

m(tt̅) comparison:

13 TeV?

• Different binning and ranges, but trend with 

POWHEG + HERWIG++ w.r.t data looks similar.

POWHEG + HERWIG++ 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Intro LHCTopWG

m(tt̅) comparison:

13 TeV?

• Similarly, POWHEG + PYTHIA8 follows similar trends 

between experiments.

POWHEG + HERWIG++ 

POWHEG + PYTHIA8
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Intro LHCTopWGOutlook

Towards combinations: 

• Work ongoing for understanding 8 TeV data. 

• Combinations planned for 8TeV (parton) and 13 

TeV (particle). 

Comparison of results 

• Need to carry out full combination to understand 

agreement between ATLAS and CMS Run1 data. 

• Work starting now to also do combinations on 13 

TeV data.
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Intro

CMS PAS TOP-16-021: 

• Studies on tuning POWHEG + PYTHIA8. 

• Jet kinematics and global event observables. 

• 8 TeV and 13 TeV data.

CMS Tuning
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Intro
13 TeV l+jets (particle) [CMS_2016_I1434354]: 

• top, tt̅ kinematics and jet multiplicities. 

8 TeV dilepton (particle*) [CMS_2015_Il397174]: 

• Jet kinematics and gap-fraction. 

8 TeV l+jets (particle) [CMS_2015_Il473674]: 

• Event-level observables (e.g. MET, HT). 

8 TeV l+jets (particle) [CMS_2015_Il388555]: 

• top kinematics. 

8 TeV l+jets (particle) [CMS_2016_PAS_TOP_15_006]: 

• tt̅ differential cross-section vs. njets.

RIVET Routines

Not an exclusive list!
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Intro
Professor: 

• 55 anchor points: 

➡ hdamp: 0.25/0.50/1.00/2.00/4.00

➡ αs(ISR): 0.05-0.15 (0.01 steps)

POWHEG Tuning
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Intro

New Tune results:

• Data prefers lower setting of αs(ISR) and higher 
setting of hdamp.

POWHEG Tuning
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Intro

New Tune results:

• ATLAS tuning sees comparable results for hdamp 
(see note ATL-PHYS-PUB-2016-20).

POWHEG Tuning

https://cds.cern.ch/record/2216168/files/ATL-PHYS-PUB-2016-020.pdf
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Intro

Comparison with other generators:

• LO MG5_aMC@NLO with MLM and new tune fails 
to describe data.

Monte Carlo settings
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Intro

Comparison with other generators:

• POWHEG and MG5_aMC@NLO [FxFx] with new tune 
seem describe most event-level observables well.

Monte Carlo settings
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Intro

Comparison with other generators:

• Some interesting MG5_aMC@NLO behaviour in 
gap fraction data.

Monte Carlo settings
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Intro ATLAS Tuning

ATL-PHYS-PUB-2016-20: 

• Studies on tuning POWHEG + PYTHIA8/HERWIG7. 

• Studies on single-top interference. 

ATL-PHYS-PUB-2016-16: 

• Studies on MG5_aMC@NLO + PYTHIA8 with FxFx. 

• Studies on SHERPA and POWHEG + HERWIG7. 

ATL-PHYS-PUB-2017-007(new!): 

• Studies on MG5_aMC@NLO + PYTHIA8, 13 TeV data. 

• Studies on SHERPA using 13 TeV data.

https://cds.cern.ch/record/2216168/files/ATL-PHYS-PUB-2016-020.pdf
https://cds.cern.ch/record/2205262/files/ATL-PHYS-PUB-2016-016.pdf
https://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PUBNOTES/ATL-PHYS-PUB-2017-007/
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Intro

13 TeV differential jet activity in eµ + jets (particle): 

• Published, RIVET routine not yet public. 

13 TeV top kinematics in l+jets (particle): 

• Soon to be published (preliminary result public). 

8 TeV l+jets [ATLAS_2015_I1404878]: 

• Published, particle and parton. 

MC only top kinematics in l+jets (particle): 

• Same phase-space as above results. 

RIVET Routines

Not an exclusive list!
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Intro
Setup: 

• MEPS@NLO interfaced to Openloops, using default shower. 

• Central scale μ2 = m(t)2 + 0.5( pT(t)2 + pT(t̅)2 ) 

Variations: 

• ME matching scale (CKKW):    ➡ 20 GeV : 30 GeV : 50 GeV 

• Resummation scale (QSF):       ➡ 0.5 : 2.0 

• Recoil scheme:                          ➡ default vs. alternative 

• ɑs SF in initial state evolution: ➡ 0.5 vs. 1.0 

• Heavy Baryon Enhancement:   ➡ 4 vs. 1 

• Scale variations µF/µR:              ➡ 0.5 : 1.0 : 2.0

Tuning Sherpa 2.2.1
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Intro

Matching Scale:

• Small deviations where PS is dominant effect. 
Perhaps slight pT(tt̅) improvement possible.

Tuning Sherpa 2.2.1
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Intro

Resummation Scale:

• Maybe slight disagreement with QSF Down at low 
jet pT but bjet pT looks reasonable.

Tuning Sherpa 2.2.1
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Intro

HBE Simulation only:

• Significant differences in observed heavy flavour 
species with different settings (and MCs).

Tuning Sherpa 2.2.1
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Intro

HBE:

• Sherpa 2.2.1 not reproducing fractions as expected 
with HBE = 4 and should be set to lower value.

Tuning Sherpa 2.2.1
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Intro

Studies of µF/µR:

• Nominal POWHEG and SHERPA settings agree well 
with data.

Tuning Sherpa 2.2.1
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Intro
Setup: 

• Parameterised µq (since v2.5.3) 

Variations: 

• Shower scale µq: 

➡ √s : HT/2 

• Compared to Powheg Pythia8 
FxFx: 

• Studies underway (early studies in ATL-PHYS-
PUB-2016-016)

Tuning MG5_aMC@NLO
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Intro

Studies of µq:

• Difference between setups is a big problem for 
systematic uncertainties.

Tuning MG5_aMC@NLO
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IntroDirect Comparisons: POWHEG

• Tuning results between ATLAS and CMS are in 
agreement, higher value of hdamp. 

Powheg Tuning:
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IntroDirect Comparisons: All

Generator comparisons:

• In comparable generator setups, agreement looks 
reasonable.
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Intro

Diagram Subtraction / Diagram Removal

Single Top Modelling

• NLO diagrams from Wt production interfere with 

LO tt̅ diagrams. 

• Two methods currently used to deal with this: 

➡ Diagram Subtraction (DS) 

➡ Diagram Removal (DR) 

• Difference is usually taken as a systematic 

uncertainty (not clear this is conservative). 

• Ideally, generate inclusive WWbb to solve this.
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Intro

Diagram Subtraction / Diagram Removal

Single Top Modelling

• Significant progress on WWbb MC, unfortunately 
not quite ready for this workshop (difficult to 
implement with current tools).
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IntroConclusions

Differential measurements: 

• Many differential cross-section measurements. 

• Beginning to explore double differential. 

• Wide array of RIVET routines public (or nearly). 

LHC Comparisons: 

• Slopes in pT(t) seem to be largely described by 

NNLO corrections. 

• 13 TeV results tentatively look comparable between 

ATLAS and CMS (work ongoing).
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IntroConclusions

Tuning Conclusions 

• POWHEG + PYTHIA8 well tuned. 

• More studies are needed to understand 

MG5_aMC@NLO configurations (CMS in general 

looks OK, but not so in ATLAS). 

• Currently exploring HERWIG7 as an alternative 

shower generator. 

• Also exploring SHERPA as an alternative generator 

(attractive due to shower model possibilities).
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IntroConclusions

Tuning Conclusions (cont.) 

• Having 2 NLO generators that describe the data is 

essential to current paradigm if we want to keep it 

(i.e. we need to improve MG5_aMC@NLO tuning). 

• If/when using alternatives (such as SHERPA or 

HERWIG7) how can we deal with overestimations? 

Are there uncovered uncertainties? 

• More on UE tuning in Efe and Deepak’s talks.
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Intro

Backup
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IntroSherpa 2.2.1
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IntroSherpa 2.2.1



Jay Howarth 59

IntroSherpa 2.2.1
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IntroSherpa 2.2.1
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IntroSherpa 2.2.1
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IntroSherpa 2.2.1
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IntroMG5_aMC@NLO: FxFx
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IntroCMS Diff. p-values


