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Heavy flavour production at the LHC

Heavy flavour (b and c quark) production is key to many important
analyses at LHC Run 2

I Relatively unconstrained from theory: ambiguities in scale
choices, resummation, mass treatment, ME/shower interface

I b production can be a crucial irreducible search background, e.g.
V + bb̄ in VH→ bb̄; and
t̄t + bb̄ in t̄tH→ bb̄

I Experimentally also important to understand tagging behaviour:
flavour fractions and feed-in to b tagging from c jets

Experimental issues often = MC issues!
Quite a technical/bookkeeping minefield. . .

HF@LHC workshop in April 2016 a good forum to discuss – valuable
talks and discussion, some resulting studies underway

⇒ HF@LHC2 in Durham, UK from 6–8 Sept 2017!
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In this talk
Inputs from HF@LHC, new ATLAS notes, and Feb t̄t + bb̄ meeting
Many measurements, lots of MC/data, no overwhelming conclusion
⇒ necessarily incomplete summary

I V + b(b)
ATL-PHYS-PUB-2017-006
Measurement/constraint prospects

I t̄t and t̄t + bb̄
ATL-PHYS-PUB-2016-016 t̄t + bb̄
ATL-PHYS-PUB-2017-007 Sherpa and MG5 aMC@NLO
Common meeting on tt+b-jet backgrounds to ttH(bb), 6 Feb

I g → bb̄ and other experimental constraints

Recurring issues:

I Source of initial-state HF? 4- vs. 5-flavour matched ME/PS event
simulation

“5F for rate/stability; 4F for kinematics”⇒ norm vs. shape.
Complicated by NLO, mass effects, and +1× b/c bins.

I Combination/HFOR and MC systematics/disagreements
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4- vs. 5-flavour

4F and 5F schemes

✘ It does not resum possibly large logs, yet 
it has them explicitly  
✘ Computing higher orders is more difficult 
✔ Mass effects are there at any order  
✔ Straightforward implementation in MC 
event generators at LO and NLO 

✔ It resums initial state large logs into b-
PDFs leading to more stable predictions 
✔ Computing higher orders is easier 
✘ pT of bottom enters at higher orders  
✘ Implementation in MC depends on the 
gluon splitting model in the PS

NNLO correction 
in the 5FS

4F scheme 5F scheme

5

from Maria Ubiali / Fabio Maltoni

4F scheme requires event vetoing to eliminate HF double-counting by
parton shower emissions. Built-in in Sherpa, ad hoc for MG5 (& Alpgen)
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Practicalities

HFOR: 4F requires some HF Overlap Removal⇒ usual cut forces
“shower narrow / ME wide” in ∆R. Ad hoc, incomplete, fragile!⇒
ATLAS nearly completely using 5F. Similar needed for combination of
5F t̄t + X with 4F t̄t + bb̄

Fitting flavour fractions: requires separation of samples to allow
normalization floating.
For Sherpa and MG5 aMC needs particle-level filtering.
In all cases⇒ slicing. . . kinematics and flavour: bookkeeping!!

Large weights! (Not specific to HF, but. . . ) Instability particularly with
Sherpa

CPU usage: multileg, esp. Sherpa & NLO, are massive CPU hogs.
ATLAS high-pT b/c-filtered samples are slower per-event than full
detector simulation!
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V + HF
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W + b(b)

V + b(b) is irreducible background for VH(→ bb̄) searches; single-b
important for control regions. Modelling is largest search uncertainty:
lack of control from measurements. c fraction affects b-tagging.

ATLAS 7 TeV W + b(b), JHEP 06 (2013) 084

Total cross-section – 4F mismodelling in 1b bin
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W + b(b)

V + b(b) is irreducible background for VH(→ bb̄) searches; single-b
important for control regions. Modelling is largest search uncertainty:
lack of control from measurements. c fraction affects b-tagging.

CMS 8 TeV W + bb̄, CMS-PAS-SMP-14-020

Similar inclusive result and MC/data to ATLAS
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W + b(b)

V + b(b) is irreducible background for VH(→ bb̄) searches; single-b
important for control regions. Modelling is largest search uncertainty:
lack of control from measurements. c fraction affects b-tagging.

ATLAS 7 TeV W + b(b), JHEP 06 (2013) 084

Alpgen (4F) discrepancy increasing at large pT
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W + b(b)

V + b(b) is irreducible background for VH(→ bb̄) searches; single-b
important for control regions. Modelling is largest search uncertainty:
lack of control from measurements. c fraction affects b-tagging.

CMS 7 TeV W + bb̄, PLB 735 (2014) 204

No systematic discrepancies
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Z + b(b)

Again, key background for VH(→ bb̄) searches

ATLAS 7 TeV
Z + b(b)

JHEP 10 (2014) 141

CMS 7 TeV
Z + b(b)

JHEP 06 (2012) 126

ATLAS/CMS consistent: 4F poor for 1b, 5F dubious for 2b
(ATLAS deviations more extreme)
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Z + b(b)

CMS 8 TeV Z + b(b),
CMS-PAS-SMP-14-010

MC normalised: 4F to NLO,
5F to NNLO

Opposite low-pT deviations for
MG+PY6 4/5F, high/mid-pT
deviation for MG 4F.
POWHEG+Py8 describes well
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Z + b(b)

ATLAS 7 TeV Z + b(b), JHEP 10 (2014) 141

NLO deviations at high Z pT– add more legs in Run 2
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V + b(b) MC comparisons
From ATL-PHYS-PUB-2017-006 MC note:

W + b
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All samples are normalised to NNLO:
⇒ factor ∼ 2 normalisation difference is pure acceptance!

MG5 aMC@NLO much harder pT than others. Large-weight artifacts!
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V + b(b) MC comparisons
From ATL-PHYS-PUB-2017-006 MC note:

W + bb̄

ATLAS Simulation Preliminary√
s = 13 TeV
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All samples are normalised to NNLO:
⇒ factor ∼ 2 normalisation difference is pure acceptance!

Significant shape difference from MG5 in mbb, Sherpa in ∆Rbb
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V + b(b) MC comparisons

From ATL-PHYS-PUB-2017-006 MC note:

Z+b-tagged fat-jet with R = 0.2 matched & tagged track-jets

ATLAS Simulation Preliminary√
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Low stats, but Alpgen deviates for small ∆R. Large-weight artifacts!
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More V + HF

Not time here to talk about W + c – sorry. Important input (with
Z + b(b)) for PDF fits. Asymm c content?

Analyses in the pipeline: ATLAS W/Z + b (resolved) and Z + bb̄
(boosted) analyses on-going at 13 TeV

ATLAS W + c (13 TeV) and W/Z + D-mesons (8 TeV) also in progress
but on longer timescales
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t̄t + bb̄
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t̄t + bb̄

I 4F used since mb important and all current 5F is massless.
I As search background: differences between different 4F generators larger than

single-generator systematics. Under control?
I Uncertainty correlations: now agreed (? cf. S. Pozzorini talk at t̄tbb̄ meeting) to

correlate within b/light categories, but uncorrelated between.
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t̄t + bb̄ cross-sections
σt̄tbb̄/σt̄tjj = 1.2–2.2% measurement vs. theory have similar
uncertainties from both ATLAS and CMS:

ATLAS top-quark production PUB note, ATL-PHYS-PUB-2016-016:
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Significant 5F/4F & shower sensitivity
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t̄t + bb̄ cross-sections
CMS differential t̄t + bb̄ measurements:

Nazar Bartosik Top-quark cross-section measurements with CMS |2217

Differential tt + bb: results

Leading additional b jet:  pT> 20 GeV, |η| < 2.4 arXiv:1510.03072 
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Agreement, but highly limited by stat uncertainty⇒ Run 2
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Other aspects of b
production & decay
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g→ bb̄ splitting

ATLAS 7 TeV Z + b(b), JHEP 10 (2014) 141

Z+b(b) - dσ/dmbb and dσ/dΔR(b,b)

18C. Debenedetti, UCSC/SCIPP - HF@LHC workshop, Durham, 20/4/2016 /24

Low ΔR(b,b) large discrepancy! 
Testing here gluon splitting to bb!!! → very interesting to be followed up in Run 2!!
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Figure 12. The cross-section σ(Zbb) as a function of m(b, b) (a) and ∆R(b, b) (b). The top panels

show measured differential cross-sections as filled circles with statistical (inner) and total (outer

bar) uncertainties. Overlayed for comparison are the NLO predictions from mcfm and amc@nlo

both using the MSTW2008 PDF set. The shaded bands represents the total theoretical uncertainty

for mcfm and the uncertainty bands on amc@nlo points represent the dominant theoretical scale

uncertainty only. Also overlaid are LO multi-legged predictions for Alpgen+Herwig+Jimmy and

Sherpa. The middle panels show the ratio of NLO predictions to data, and the lower panels show

the ratio of LO predictions to data.
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Figure 12. The cross-section σ(Zbb) as a function of m(b, b) (a) and ∆R(b, b) (b). The top panels

show measured differential cross-sections as filled circles with statistical (inner) and total (outer

bar) uncertainties. Overlayed for comparison are the NLO predictions from mcfm and amc@nlo

both using the MSTW2008 PDF set. The shaded bands represents the total theoretical uncertainty

for mcfm and the uncertainty bands on amc@nlo points represent the dominant theoretical scale

uncertainty only. Also overlaid are LO multi-legged predictions for Alpgen+Herwig+Jimmy and

Sherpa. The middle panels show the ratio of NLO predictions to data, and the lower panels show

the ratio of LO predictions to data.
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from Chiara Debenedetti
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g→ bb̄ splitting
CMS 7 TeV Z + bb̄, JHEP 12(2013) 039

CMS sees a similar trend with Alpgen(+Herwig?) best,
but shower rather than 4F effect since 4F MG5 is poor
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g→ bb̄ splitting

Josh McFayden    |   HF @ LHC   |   21/4/2016 
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What does it tell us?
! These results use the same dataset…


! How much do we learn about V+HF from inclusive di-b-jets?

! Seems like trends might be different?


! Is the large leading jet requirement good/bad?

from Josh McFayden
Tension between ATLAS Z + bb̄ and di-b-jet?

ATLAS gluon splitting measurement via J/ψ + µ not quite ready for
this workshop! Get below jet-R limit. 15/18



g→ bb̄ splitting measurement prospects
ATLAS gluon splitting measurement via J/ψ + µ not quite ready for
this workshop
⇒ No jet radius: break through the below jet-R resolution limit

Also:

ATLAS Simulation Preliminary√
s = 13 TeV
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This ∆Rbb̄ in Z + bb̄
with fat jet and
R = 0.2 tagged
subjets shown earlier
is underway on
13 TeV ATLAS data.

Again, get past the
calo jet resolution
limit.
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Heavy baryon modelling (in t̄t)
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Heavy baryon modelling:
hadronisation detail.

Won’t affect main event kinematics,
but affects decay topologies and
kinematics (e.g. frag function)⇒
tagging?

ATLAS measurement of b-track-jet
frag functions in pipeline
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Heavy baryon modelling (in t̄t)

Species Sherpa v2.2 Sherpa v2.2 Pythia8 Herwig7 World Average[24]
HBE=4 HBE=1

B+ 27.3 40.1 42.9 38.8 40.4 ± 0.6
B0 27.2 40.1 42.9 38.7 40.4 ± 0.6
B0

s 9.0 13.0 9.4 7.4 10.3 ± 0.5
Baryons 36.5 6.8 4.8 15.1 8.8 ± 1.2

Sherpa b-baryon enhancement is too strong by default.
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Heavy baryon modelling (in t̄t)

Species Sherpa v2.2 Sherpa v2.2 Pythia8 Herwig7 World Average[25]
HBE=4 HBE=1

D+ 14.5 19.3 29.3 26.5 22.56 ± 0.77
D0 38.5 55.1 56.4 58.9 56.43 ± 1.51
D0

s 11.3 18.1 9.5 8.5 7.97 ± 0.45
Baryons 35.9 7.5 4.8 6.1 10.8 ± 0.91

Sherpa c-baryon enhancement also too strong by default.
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Summary

I Great progress in MC/data modelling of HF since Run 1
Worth remembering that we’re lucky that this can be modelled at all
It’s come at a substantial CPU price, though: MC is no-longer “free”

I Theory errors still large for searches: profiling helps, but. . .

I Need Run 2 high-stats measurement analyses in V + bb̄ and
t̄t + bb̄ (and more) to constrain models & squeeze systematics.
Rivet analyses have been very useful for both experiment and
theory.

I No big breakthroughs to announce now, but some significant
improvements, and new Run 2 analyses + MC developments on
their way

I A reminder! HF@LHC2, Durham, UK, 6-8 Sept
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