

Theory perspectives in heavy quarks modelling

Davide Napoletano, ATLAS-CMS MC Workshop, 04/05/2017

Intro

• m_b somewhere in $\Lambda_{QCD} < m_b < m_{V,H,t}$

• main production through $g \rightarrow bb$

Problems so far are only theoretical/MC

• There are still quite a few open questions on the topic...

4FS vs 5FS

$m_b \neq 0$ (Everywhere)

• $\sim \alpha_S \log \frac{m_b^2}{q^2}$, can be O(1)

• $g \rightarrow b\bar{b}$, no problem

4FS vs 5FS

• $m_b = 0$

Logs resummed in b-pdf •

• $g \rightarrow b\bar{b}$, depends on PS

$pp \rightarrow VH(b\bar{b})$

arXiv:1612.04640

 Compare against Zbb data to understand Hbb

 As in Zbb, good shape agreement among schemes

- 5FS can leads to collinear singularities, $g \to b \bar{b}$ depends solely on shower
- 5FS has to rely on merging, not very efficient...
- 4FS has at least the first $g \to b \bar{b}$ comes from MEs
- 4FS fully inclusive, but...

- Large irreducible bkg : ttbb
- Large MC uncertainties are limitation
- NLO+PS in 5FS and 4FS

$pp \rightarrow t\bar{t}H(b\bar{b})$

Cascioli et al, arXiv:1309.5912v2

$pp \rightarrow t\bar{t}b\bar{b}$ NLO+PS with m_b

• Big $g \rightarrow b\bar{b}$ effects Different running couplings in 4FS and 5FS

$g \rightarrow b\bar{b}$ Shower

- SHERPA (2.2.3) : $\alpha_s(m_{Q\bar{Q}})$ + mass effects in FSR (ISR on-going)
 - DIRE : $\alpha_s(s_{ij}s_{jk}/s_{ijk})$ + mass effects in FSR,
- HERWIG 7.0 : $\alpha_s(m_{Q\bar{Q}})$ (virtuality) mass effects in FSR,
- PYTHIA 8: $\alpha_s(k_{\perp})$, + many options for mass effects,
 - DIRE : $\alpha_s(s_{ij}s_{jk}/s_{ijk})$ + mass effects in FSR,
 - aMC@NLO : only massless

Different implementations

$g \rightarrow b\bar{b}$ Shower

... if I let bs coming only from the shower...

• $\alpha_{\rm S}(k_{\perp})$ gives a much harder spectrum

• $\alpha_{\rm S}(m_{\rm b\bar{b}})$ is generally the preferred options...

(this should really be taken as an uncertainties though...)

$pp \rightarrow t\bar{t}H(b\bar{b}) \ \ \text{YR4} \ \ \text{Comparison}$

Running coupling

4FS vs 5FS: running coupling

- Massive 5FS
- Doped PDFs

- but 4FS ~20% off...
- Mass effects necessary

Doped PDFs

• Hybrid evolution: $\alpha_{S}^{5FS}(Q) \otimes P_{ij}^{4FS}$

Massive 5FS

- Flavour scheme with 5 active flavour, with massive-bs
- Problem(s):
 - Factorisation beyond NLO
 - PDFs (must include massive splitting kernels)
 - Same for shower

Massive 5FS (a) LO, $pp \rightarrow Hbb$

- m_b in Matrix Elements (trivial)
- m_b in II/IF dipoles in shower
- not so negligible effects
- working to have massive 5F@MC@NLO

• fits with intrinsic b-PDF (Forte-Giani)

• will also remove m_b dep from PDF

Conclusions

- Still quite a few open questions:
 - How much difference does it make to choose 4FS or 5FS?
 - Can we produce a recipe? Some studies seem to suggest yes... (Maltoni, Ridolfi, Ubiali)
- What's the effect of $g \rightarrow bb$ splitting, really?
 - Probably more importantly: do we assess the various uncertainties right?
- Is there such a thing as a "sensible" scale choice?
 - or are we simply limited by the large scale dependency of our LO tools?

