

EuCARD2 WP10.2 main results and open issues

L. Bottura and C. Senatore on behalf of WP10.2 February 15th, 2017

TWENTE.

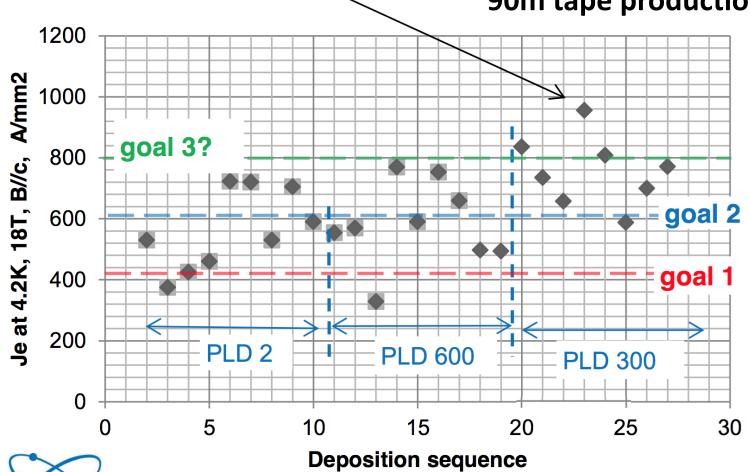
Initial targets (kick-off on 14 June 2013)

parameter	units	targets
J _E (20 T, 4.2 K)	(A/mm²)	600
σ (I _C) within a unit length	(%)	10
M(1.5 T, 10 mT/s)	(mT)	300
Range of $\sigma_{transverse}$	(MPa)	100
Range of $\epsilon_{\text{longitudinal}}$	(%)	±0.3
Unit length	(m)	100

parameter	units	targets	
I _C (20T, 4.2 K)	(kA)	10	
Provisional width	(mm)	10	
Provisional thickness	(mm)	1.5	
Effective contact resistance	$(\mu\Omega)$	5	

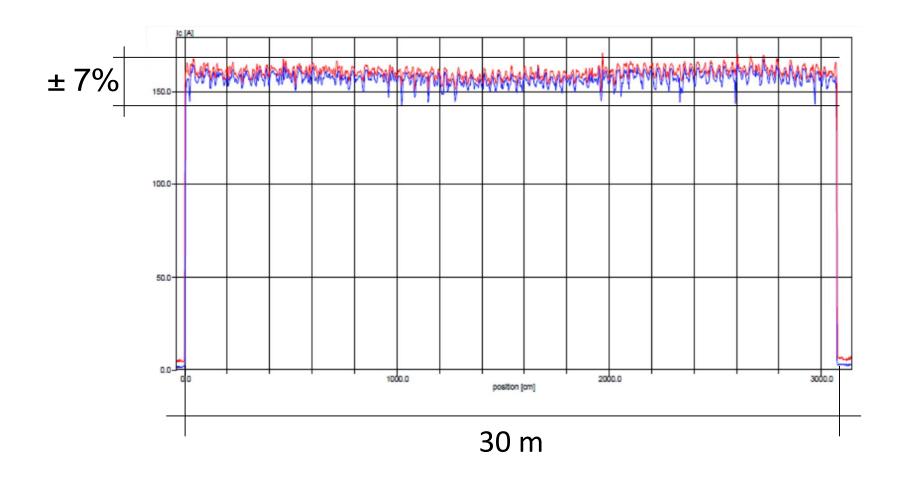
Tape

Cable


Record results

12 mm tapes

 $I_c = 1338 \text{ A/4mm-w}$


20 to 30 m processed unit length

90m tape production unit length

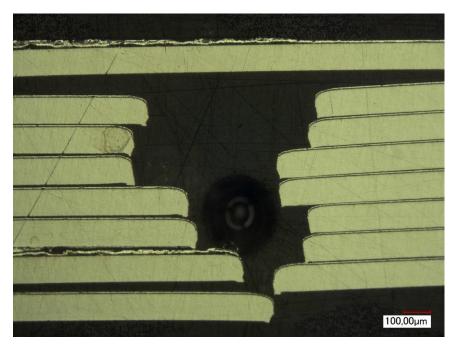
Good homogeneity demonstrated

PLD-300

Status of work - tape

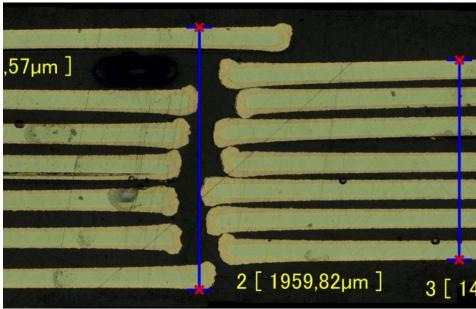
- Total 850 m of cable produced by partner Bruker-HTS, this completes the EuCARD2 contractual obligations, and with very good performance (exceeding largely the targets set in 2012)
- CERN has procured 800 m of tapes procured from alternative sources (A. Ballarino)
 - 200 m SuperOx (June 2015) 100 m cabled
 - 100 m Sunam (July 2015) cabled
 - 300 m Fujikura (December 2015) attempted cabling
 - 200 m (15% Zr) SuperPower (June 2016) 100 m cabled
- Nearly 2 km of tape produced/procured
- Next step: CERN is procuring of a total of 3.1 km of tape (A. Ballarino)

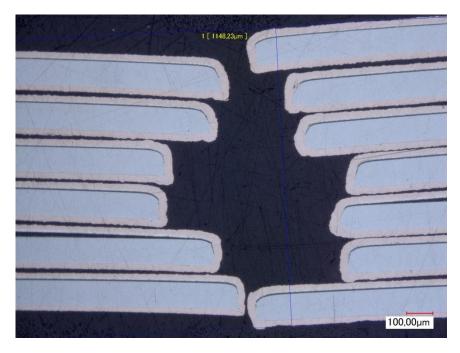
Cable dummies (April 2014)



Cable dummies (April 2014)

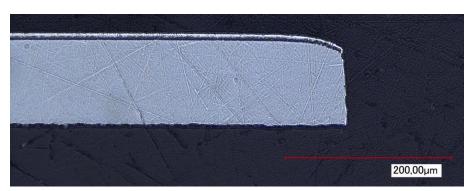
Cable technology


Burrs and delaminations



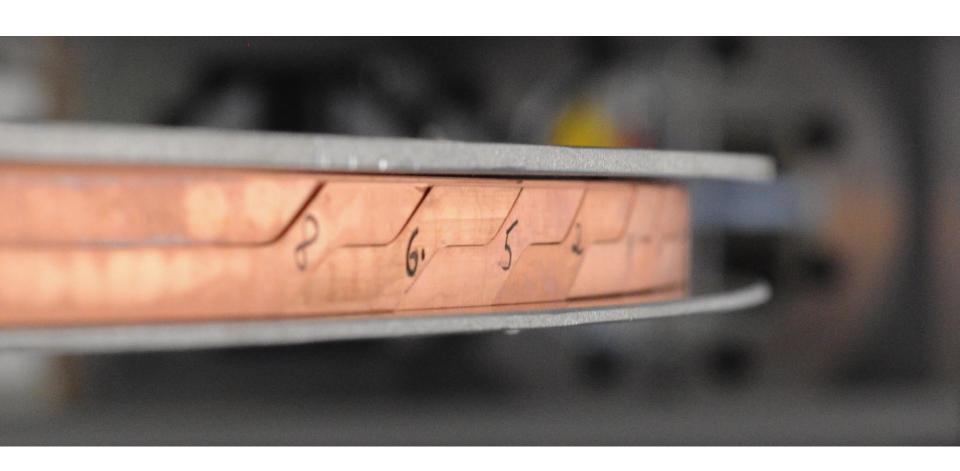
Dog-boning

Cable technology


Optimal Cu-coating

New punching tool

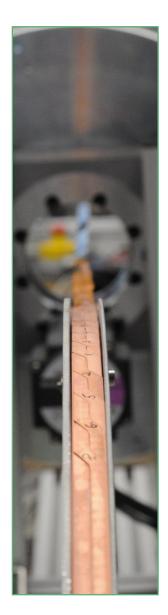
Baseline cable designs (October 2015)


Skinny Roebel (AB) (out of 0.1 mm tapes)

Number of tapes	(-)	15
Width	(mm)	12
Thickness	(mm)	0.9±0.1
Transposition pitch	(mm)	300
Critical current (4.2 K, 20 T perpendicular)	(kA)	≥ 4.8

Fat Roebel (CT+AB) (out of 0.14 mm tapes)

Number of tapes	(-)	13
Width	(mm)	12
Thickness	(mm)	1.1±0.1
Transposition pitch	(mm)	300
Critical current (4.2 K, 20 T perpendicular)	(kA)	≥ 5.8


Final (and first) full length (January 2017)

Status of work - cable

- Cable production on-going at KIT (A. Kario)
 - All Feather.M0 lengths produced and delivered
 - First Feather.M2 UL delivered to CERN
 - Short length for Ic test in FRESCA produced
 - Second Feather.M2 UL in production (March 2017)
- CERN has procured 32 m of Roebel cable from SuperOx (Sunam tape) (A. Ballarino) and 60 m of dummy from GCS
- Next step: production of additional UL's using optimized tooling at KIT (4 UL's, A. Kario), as well as SuperOx lengths (2 UL's, A. Ballarino)

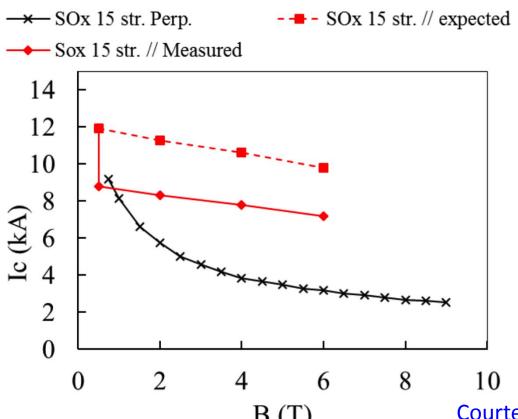
Further activities

- Ic surface characterization (C. Senatore)
- Ic measurement on Roebel cables (J. Fleiter)
- Transverse pressure experiment on Roebel cable (M. Dhalle)
- AC loss, magnetizatin and Rc measurement and analysis (M. Dhalle, Y. Yang)
- Quench experiment (M. Dhalle, Y. Yang)
- BSCCO cable test (LBNL, NHMFL, M. Dhalle)

$Ic(B,T,\alpha)$

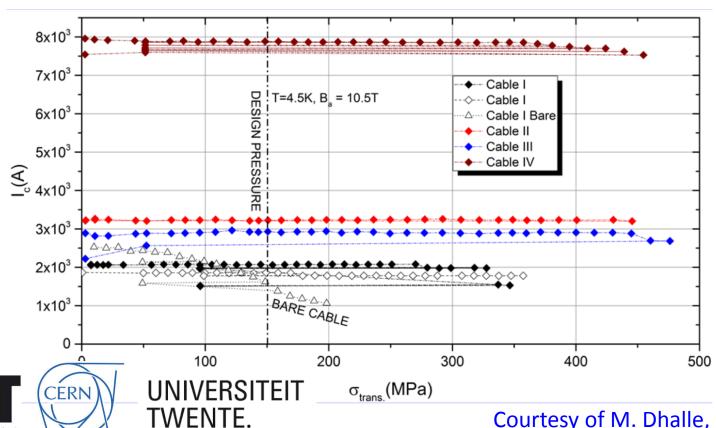
- Samples delivered by Bruker-HTS, relatively small amount of material (we need to prepare more)
- Measurements have started at University of Geneva
- Very important measurement, it will provide a benchmark value for the EuCARD2 tape (not available at present)

INSTITUTE	θ [°]	B [T]	T [K]
KIT	0-360	0.5	70, 77
UTWENTE	0-360	0.5, 1, 2	4.2, 10, 20, 30, 40
INPG CNRS	0, (15), 30, 60, 90	up to 25	4.2
UNIGE	0, (15), 30, 60, 90	up to 19	4.2, 20, 40, 60

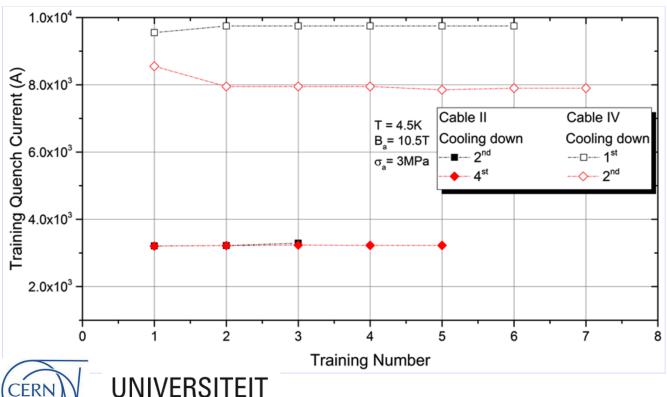


UNIVERSITEIT TWENTE.

Ic measurement on Roebel cables

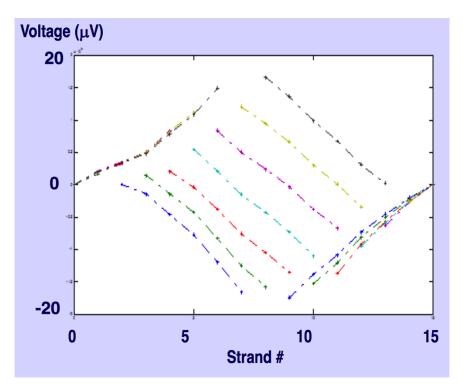

- SuperOx cable, 15 strands, provided as a short sample for testing
- Bruker-HTS/KIT cable has arrived at CERN

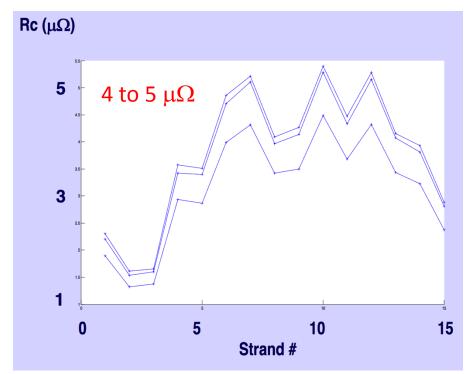
Ic vs. transverse pressure


- Program approaching completion of initial scope:
 - Cable I: SuperPower tape, Lp=126 mm, KIT impregnation
 - Cable II: SuperPower tape, Lp=226 mm, KIT impregnation
 - Cable III: SuperPower tape, Lp=226 mm, CERN impregnation
 - Cable IV: Bruker-HTS tape, Lp=226 mm, CERN impregnation

Open issue: degradation?

- Significant loss of Ic observed after a thermal cycle
 - Is this a problem with the sample ?
 - Is this a problem with the insulation system?



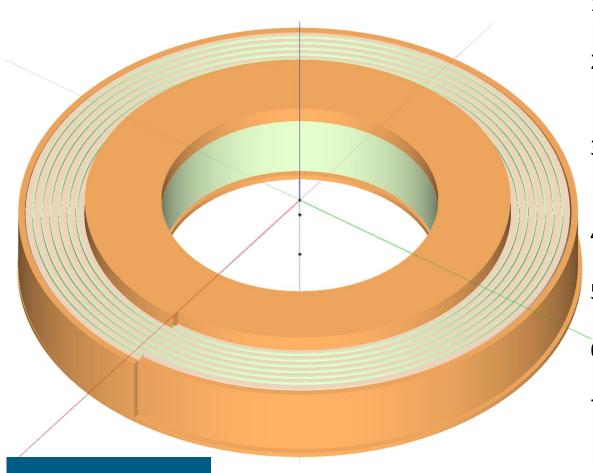

AC loss/Magnetization/Rc

- First measurement performed at U. Twente
- Surprisingly "low" Rc values observed

AC loss/Magnetization/Rc

Liquid Nitrogen
Measurement current 2A
Potential referenced at strand 15

NOTE: measurements at 4.2 K show a reduction to $2 \mu\Omega$


Quench experiment

- 2-mm tape length (Cu-coated) at Twente (measurements in Spring 2017) (M. Dhalle)
- 2m length of "Frankenstein" cable (E2B-15/5.5-003) shipped to Southampton to attempt a cable quench measurement at high temperature (self field) (Y. Yang)

Roebel Pancake Coil for Quench Measurements

- 1. G10 former with inner current injection terminal
- Inner current contact to a whole turn, CNC machined to fit cable thickness
- 3. Soldering cable to contact and then start winding with fibre-glass insulation tape
- 4. Instrumentation/Heater attached during winding
- 5. Solder the outer contact to a whole turn
- 6. Attached outer terminal at the same time
- 7. Epoxy impregnation

Bi-2212 cable test

- Activities restarted, thanks to D. Larbalestier,
 E. Hellstrom, E. Bosque, (A. Godeke) (NHMFL) and T. Shen (LBNL)
- Cable HT on CERN sample holder, shipped to U. Twente for measurement

UNIVERSITEIT TWENTE.

Other items (outside the scope)

 Test of Feather.M0 in SULTAN to profit from (unique) variable temperature and field

Variable temperature insert in construction and commissioning at EPFL/SPC, Villigen PSI

Achievements

parameter	units	targets	
J _E (20 T, 4.2 K)	(A/mm²)	600	-
σ (I _C) within a unit length	(%)	10	√
M(1.5 T, 10 mT/s)	(mT)	300	
Range of $\sigma_{transverse}$	(MPa)	100	√
Range of $\epsilon_{longitudinal}$	(%)	±0.3	
Unit length	(m)	100	√

parameter	units	targets	
I _C (20T, 4.2 K)	(kA)	10	— /
Provisional width	(mm)	10	12
Provisional thickness	(mm)	1.5	0.91.4
Effective contact resistance	$(\mu\Omega)$	5	√

Таре

Cable

What is left to do?

- Procure more material, tapes and cables to feed the magnet program (see later presentations)
- Complete the validation of the final cable geometry
 - Ic test in FRESCA
 - Feather.M2
 - Thermal cycles and check degradation
- Quench detection and protection experiment
 - Measure temperatures (?), propagation speed and voltage waveforms
- Magnetization values (effect on field quality) and control
 - Effect of striation (?!?)
 - Measurement of Bi-2212 cable
- Longitudinal strain limits for winding and operation

UNIVERSITEIT TWENTE.

WP10.2

