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Introduction – The first HTS insert coils 
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1995-2006

After a decade of BSCCO 
coil development

• Coil size and delta B 
• Bpeak still ~ 24-25 T
• σpeak ≤ 125 MPa
• Jave  <100 A/mm2

• 22.3 T/ 950 MHz LTS 
NMR in operation

• 23.5 T / 1.0 GHz LTS 
NMR in development

• Little enthusiasm left for     
HTS insert coils at      
100 A/mm2 for 25 T

• Except NIMS 1.02 GHz

(2006)
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Introduction – The first REBCO insert coils 
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2008

After a decade of BSCCO 
coil development

• Coil size and delta B 
• Bpeak ~ same
• σpeak ≤ 125 MPa
• Jave  <100 A/mm2

First few REBCO coils
• Coil size , delta B 
• Bpeak  34 T
• Jave >>200 A/mm2

• σpeak > 200 MPa 

• 30 T HTS-LTS magnet   
now seems feasible

• Conductor immature

(2008)

(Developed for power applications)
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Introduction – 32 T Concept 
• User magnet for 20 years of materials research 

• Target above 30 T, bore of at least 32 mm desirable
• Ramp to field in one hour
• Modest uniformity

• 200 A/mm2 in the windings
• Generic target for reasonably compact 30T class magnets
• This was aggressive and unprecedented at the time for a user magnet

• Conventional Copper current density levels
• Not aggressive in strain

• Relative to critical strain
• Operation at no more than 70% of Ic
• 15 T LTS outer magnet, separately and concurrently developed by industry

• Higher Jave in LTS windings below ~15 T
• At 250 mm bore, a challenging magnet in its own right

• Simple 4.2 K helium bath
• Conductor specification must meet routine capability of vendor

(2009)



6H.W. Weijers – David Larbalestier (WAM-HTS Barcelona February 15-17, 2017)

The 32 T magnet: a user magnet 
Key parameters:

Center field 32 T
Clear bore 34 mm
Ramp time 1 hour
Uniformity 1 cm DSV 5×10-4

Operating temperature 4.2 K
Stored energy 8.3 MJ
Expected cycles/20 years 50,000
System weight 2.6 ton

15 T / 250 mm bore LTS magnet
17 T / 34 mm bore REBCO coils
Separately powered, simultaneously 
ramped

REBCO: 2 double pancake coils
Nb3Sn
NbTi

Dil. fridge or VTI

(2011)



7H.W. Weijers – David Larbalestier (WAM-HTS Barcelona February 15-17, 2017)

LTS Outsert for 32 T
Specifications

• 15 T, 250 mm bore, 4.2 K
• One hour to full field
• Radial field component < 1.5 T over HTS coil volume
• Must be tolerant of HTS insert coil quench

• Note: HTS quench behavior unknown at the time of order
• LTS quench must not destroy HTS coil 

Required Collaborative effort
• Especially on quench management

Outcome
• 5-coil NbTi + Nb3Sn magnet
• Passive + active quench protection
• 268 A operating current for 15.0 T
• Rated at 15.3 T stand-alone
• 294 H self inductance
• 7.0 MJ stored energy Completed Outsert at Oxford Instruments (2014)

(2012)
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32 T Parameters (2013)

200
174 174
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32 T and selected other projects for perspective

Project Group Type
delta B [T]    
HTS / LTS HTS

Jave        
[A/mm2]

ID/OD/height 
[mm]

Opera
-tional

Comment

32 T NHMFL User 
magnet 17 / 15

REBCO 200 40/140/178 
2017? Insulated

REBCO 170 164/232/320
25 T 
Cryofree Tohoku User 

magnet 10.6 / 14 (REBCO) 
Bi-2223 103 96 / 278 / 389 2016 Insulated

28 T NMR Bruker User 
magnet ?? ?? ?? ?? ?? ??

28 T Demo RIKEN Demon-
stration 11.5 / 17.1

REBCO 371 40 / 68 /210
- 27.6 T 

recordBi-2223 164 81 / 125 / 384
Muon
collider 
solenoid

Brook-
haven 

Demon-
stration 15+ / 0 REBCO 539 25/91/64 - No 

insulation

26 T NI Sunam/
NHMFL

Demon-
stration 26 / 0 REBCO 404-221 35/172/ 327 - No 

insulation

30.5 T 
NMR MIT User 

magnet 18.8 / 11.7

REBCO

547

91 /118 / 324 2018/ 
2020

? 

No 
insulationREBCO 151 / 168 / 392

REBCO 196 / 210 / 466
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Test coil and prototype coil phase: new technology
Key topics to resolve:
• Construction

• Winding, joints, terminals, cross-overs, reinforcement

• Dog-boning: ~12% void in windings
• Thickness (and Cu-area) variability with non-standard 50 µm plating target 
• Pre-2013: width variability

(2013)

Abraimov led 
conductor evaluation 

effort
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Test coil and prototype coil phase: new technology
Key topics to resolve:
• Construction

• Winding, joints, terminals, cross-overs, reinforcement

• Stagnant “Helium bubble”
• At - Bz·dBz/dz > 2100 T2/m: downward magnetic force on helium gas (bubbles) 

exceeds buoyancy (few % of HTS volume: near top & inner diameter of coils)
• Expect locally 104 T2/m: Poor cooling in part of HTS coil for lack of liquid helium
• Radial thermal conductivity is poor in windings as well

• Coil design focus on
• Radial conductive elements just above windings
• Axial thermal conductivity of windings: flat pancakes!

Pre-2013:
Width variations causing         
uneven surface: ± 100 µm

Since 2013: ± 10 µm: flat!

(2013)
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Test coil and prototype coil phase: new technology
32 T Cooling disks with 
• Embedded radial Cu strips and 
• Helium channels on top and bottom surface

Bottom, facing windings, thin G-10 cover Top, facing top flange

Temperature sensors

Main bubble zone

(2013)
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Prototype coil 20/70 in 15 T background

• Top terminal
• Top flange
• Cooling disk
• Cover for quench 

heater wiring
• 6 modules / 12 

pancakes
• Axial compression 

strap
• Tension mechanism 

for strap

Coil cross section with bubble region in pink

• Capacitive sensors confirm the bubble forms as expected
• Temperature sensors confirm the temperature remains ~4.2 K

(2013)
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Test coil and prototype coil phase: new technology
Key topics to resolve:
• Construction

• Winding, joints, terminals, cross-overs, reinforcement

• Stagnant “Helium bubble”
• At - Bz·dBz/dz > 2100 T2/m: downward magnetic force on helium gas (bubbles) 

exceeds buoyancy 

• Quench detection 
• Conventional approach with balanced voltage taps & 100 mV threshold adequate

• Quench protection
• Active quench heaters
• Numerical simulation tools with “HTS physics”

(2013)
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Quench, what to worry about?
32 T has a separately powered LTS and HTS circuit
• First worry is an LTS quench causing a stress peak in HTS

If a REBCO coil is designed with any reasonable Ic margin:
• The temperature margin is large, much larger than LTS equivalent

• No spontaneous HTS quenches

• Worry first about preventing damage causing a quench
• Stress-concentrations in windings, terminals, joints, conductor delamination

• Then worry about preventing the quench causing (more) damage

HTS: root problem is damage causing a quench, not the other way around*

*: if there is any Ic margin in the magnet design
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Quench Protection Heater Assembly

Epoxy Fiberglass G-10
Mechanical strength

Kapton
Insulation

Heater assembly
• Steel element

Power, temperature
• Kapton

Insulation

Inner HTS coil 3.3 Ω at 4 K

Outer HTS coil 5.1 Ω at 4 K

(2013)
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Prototype phase experimental goals
• Quench heater performance

• Quench initiation, coil protection with dump resistor
• HTS Quench protection

• Discharge HTS stored energy using only quench heaters
• Quench simulation

• Generate sufficient data to benchmark quench simulation code
• HTS + LTS quench protection

• Determine behavior of LTS coils during HTS quench 
• Quench LTS (manually) and protect HTS with quench heaters

• Load cycling 
• Meet and exceed design stress values repeatedly
• Mostly tests terminals, joints, reinforcement etc.

• AC-loss
• Measure helium boil-off while ramping

We did all that, and generated 27 T all-superconducting demonstration magnet record 

(2013)
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Quench data and simulation

• Quench heaters effective
• Simulation is sensitive to Ic variations within variability of short sample data

• Especially for oldest conductor (~2012) in the 20/70 prototype coil
• Would like to have more Ic(B,angle) data in 10-50 K range on recent full-width samples

Solid: Measured in combined prototype coils
Dash: Calculated, 20/70 coil adjusted
Dot: Calculated, 20/70 and 82/116 adjusted

LTS (12 T)

HTS

(2015)

• Prototypes:
6+6 double pancakes

• 32 T:
20+36 double pancakes

• Same 15 T LTS 
magnet

1/e*Io

Io
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Quench heater performance

• HTS decay time sensitive to quench heater current at lower coil current
• Still well below decay time of LTS Outsert 

(2015)

Case of HTS quench only
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HTS + LTS quench protection
• No degradation observed in deliberate quenches in 32 T 

prototype coils
• Or quenches caused by false positive in detection

Scenario HTS LTS Central field
Full field, LTS quench 200 A 268 A, 15 T 24.6 T

False positive 222 A 214 A, 12 T 22.7 T

HTS  quenched 200 A 134 A, 7.5 T 17.1 T

LTS  quenched 200 A 134 A, 7.5 T 17.1 T

False positive 173 A 134 A, 7.5 T 15.8 T

HTS self-field 200 A 0 A, 0 T 9.6 T

(2015)

HTS –LTS high-field quenches can be protected
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Prototype load cycling

32 T reference peak hoop stress in HTS:  Coil 1: 363 MPa

Coil 2: 378 MPa

26 T
400 MPa  Coil 1
474 MPa  Coil 2

n=20,              n=12,     n=12

12 times
362 MPa  Coil 1 (100% of 32 T design) ✓
436 MPa  Coil 2 (115% of 32 T design ✓

Time

(2015)

(14 T)
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Prototype phase: learned and open questions
• Testing confirmed viability of developed technology

• Prototype quench behavior dominated by inner coils: 20/70
• With lowest Ic and oldest conductor (pre-32 T spec)
• Temperature margin lower than in 32 T 
• So 32 T needs more powerful heaters than prototypes
• Could not study some aspects of 82/116 outer prototype coil as desired

• Which has conductor representative of the 32 T conductor 

• 32 T Quench calculations quite sensitive to input parameters
• Within error bars of available data
• Need deliberate test quench in 32 T (with low background field) to verify quench 

protection parameters are set adequately for full-field quench
• Can’t rely on simulations alone

(2015)
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Specifications negotiated (took 2 years) for 12 km conductor that 
• Meet 32 T project needs
• Are routinely achieved in production runs: “catch the outliers”

Insufficient Ic correlation (at the time) between 77 K, SF and 4.2 K in-field
 Specify Ic at 4.2 K and most demanding field and angle in coil
 Verify parameters in all conductors in collaborative NHMFL/SP QA program

REBCO conductor specification

Parameter UNIT Value

Ic at 4.2 K, 17 T, 18° angle A ≥256
n-value at 4.2 K, 17 T, 18° angle - >25
Thickness (average over all pieces) mm ≤0.170
Width mm 4.10±0.05
Cu stabilizer cross-sectional area mm2 0.42±0.01
RRR stabilizer - >50
Hastelloy C267 (half hard) cross-sectional area mm2 0.20±0.01
Joint resistivity (77 K) nΩ-cm2 ≤160
Piece length Coil 1 / Coil 2 m 60 / 110

Well within spec with
mid-slit

Iop = 180 A, later 173 A

(≤ 50 nΩ per joint)

(2013)
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REBCO conductor received

specification

• Short sample Ic varies within piece length
• Average Ic generally increased with time

Data on 175 lengths, ordered in sequence of increasing average  Ic

(2015)
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32 T assembly

Placement of conductor: 
• Best conductor at ends
• For Coil 1 also based on turn density for B uniformity  

Coil 1 Coil 2
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(2015)

Specification
Operating current
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32 T assembly

Placement of conductor in the two REBCO coils: 
• Best conductor at ends
• For Coil 1 also based on turn density for B uniformity

Specification
Operating current

Coil 1 Coil 2
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(2015)
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32 T Assembly

Operating current
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(2015-2016)

• Calculated critical current at full field
• Ic at actual magnetic field and angle
• Operating current is 1/10 to 1/3 of critical current
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32 T Assembly

Operating current
Must be driven normal at ~ same time
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(2015)

• In quench, about half coil the HTS volume must be driven normal to absorb 
stored energy (Hot spot temperature < 200 K)

• Calculated critical current at full field
• Probably an acceptable Ic-margin distribution
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Initial T margin

Operating current

~ 25-30 K margin

260 A = ~10 K margin

173 A = 0 K margin

~35-40 K margin
(Tcs = 40-45 K)
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(2016)

• Temperature margin goes up during quench as field and current decay
• Once current decay starts, it becomes harder to drive rest of HTS to normal state 
• Desirable to have large fraction of coil volume with ~ same temperature margin

• Operating at 70% of Ic would give  
> 10 K initial temperature margin

• 32 operates at 33-10% of Ic
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Initial T margin

Operating current

~ 25-30 K margin

~10 K margin

0 K margin

~35-40 K margin
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(2016)

• Temperature margin goes up during quench as field and current decay
• Once current decay starts, it becomes harder to drive rest of HTS to normal state 
• Desirable to have large fraction of coil volume with ~ same temperature margin

• Operating at 70% of Ic would give  
> 10 K initial temperature margin

• 32 operates at 33-10% of Ic

Desirable Ic range: 10-20 K margin
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Initial T margin

Operating current

Desirable Ic range: 10-20 K margin

~35-40 K margin
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Energy needed to heat the windings

(2016)





• Temperature margin goes up during quench as field and current decay
• Once current decay starts, it becomes harder to drive HTS to normal state 
• Desirable to have large fraction of coil volume with same temperature margin

T [K]
En
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gy

 [J
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REBCO conductor

Operating currentC
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] 
(2016)

• Calculated critical current at full field
• Ic at actual magnetic field and angle
• Operating current is 1/10 to 1/3 of critical current

The price for this large margin is in the HTS quench heaters
• 120,000 J in ~ 100 kg of HTS coils
• Compare to     300 J in 1400 kg LTS coils active protection
• Compare to     260 kJ stored energy in HTS stand-alone

The next project should have grading and a maximum on Ic too
Grading via REBCO layer thickness
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REBCO conductor

Operating current

Bad Ic / T margin distribution
Ends absorb most energy

32 T Prototype quench damage scenario

Hypothetical

C
al

cu
la

te
d 

cr
iti

ca
l c

ur
re

nt
 in

 c
oi

l [
A]

 
(2015)

• Temperature margin goes up during quench as field and current decay
• Once current decay starts, it becomes harder to drive HTS to normal state 
• If a small volume fraction has much lower Ic / temperature margin as the rest, 

it will absorb almost all stored energy and overheat
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32 T Full field quench simulation
• Key: time to reach current sharing temperature in REBCO insert

• Determined by heater power and temperature margin

30, 70 and 90 ms  
turn-on time:

Slight sensitivity

Design σ limit

Current decay 
in inner Nb3Sn 
coil

t = 0, LTS 
quench

(2016)

1/e*Io
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32 T Full field quench simulation

• Can’t quite make 200 K target hot-spot temperature
• Sensitivity to turn-on time and heater power (> 23 A) is low

30, 70 and 90 ms 
turn-on time

LTS

HTS

(2016)
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Construction

June 6
Coil 1, Jan 29

Coil 2, April 25

May 23

Assembly from double pancake modules 
to complete coils and all electrical tests 

takes 2-3 months per coil

(2013)
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32 T assembly (2016)

(June 29) (August 11)

HTS assembly going into LTS magnet 32 T magnet going into cryostat
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32 T in Cell 4

Axial Hall probe mapper
(temporary)

Quench valves

(Present)

(2016)
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32 T HTS coils at 77 K
Operating only the REBCO coils

• Observable hysteresis in center field

(2016)
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32 T HTS coils at 77 K
• Bz versus z map in 0-1-5-10-12-10-5-1-0 A stepwise current sweep 

• Observable hysteresis in center field
• Change in axial field, profile depending on history
• Remanent field up in center, down at ends

We’ll see how this 
translates to 

behavior at 4.2 K

(2016)

Ramp up

Ramp down

Cross-over

Magnetic field on axis

Inner HTS coil
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Next
• At 4.2 K: Test quench-protection heaters in HTS coil near full current

• In low background field
• Compare with simulation

• Adjust protection settings as necessary
• Stepwise increase of current to 32 T

• In synchronized HTS+LTS operation 

(2017)

Future location of 
32 T magnet

Dec. 9, 2016 Future location of 32 T magnet
February 16, 2017
Completion planned for April
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32 T test phase: learned
• Measureable hysteresis in Bcentral at 77 K

• Axial field profile changes too from ramping up to ramping down
• Can be tool to improve uniformity once fully understood

• HTS-LTS magnet > 30 T is new technology
• Quench detection and protection are complicated systems
• Testing all equipment in normal and fault modes is time consuming

• Brings out otherwise hidden issues 

(2013)
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Summary
• 32 T magnet combines sizeable LTS and HTS coils

• Insulated HTS coated conductor, up to 200 A/mm2 in modular windings
• Required collaborative effort with LTS magnet and HTS conductor vendor

• Status of 32 T
• LTS magnet (15 T/250 mm bore) is fully qualified
• HTS coils are wound and assembled, mounted in LTS bore
• Magnet mechanically and electrically checked out at room temperature
• 77 K transport current testing and axial field map done
• Quench detection and protection systems stand-alone testing ongoing

• Next
• Complete test protocol including operation to 32 T

• Key observations 
• Conductor developed quickly to far above Ic specification by late 2014

• Conductor development is fast compared to time scale of projects like this
• Stress and HTS & LTS quenches are manageable using chosen technology

• Large temperature margin requires powerful quench heaters
• Desirable to engineer temperature margin across coil: minimum and maximum

(2016)



Thank You!
weijers@magnet.fsu.edu
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