
Transient condition storage
Hadrien Grasland

LAL – Orsay



2

Introduction

● Review of the ATLAS ICondSvc proposal revealed a 
number of fundamental shortcomings:
– Design is complex and largely undocumented

– Leaks many implementation details

– Strongly tied to ATLAS infrastructure

● Benedikt and I hence decided to propose a new interface:
– Take into account ATLAS' use cases and requirements

– Design interface so that it can wrap ATLAS infrastructure

– But account better for the wider Gaudi ecosystem



3

Interface design process

● High-level overview given at LHCb computing workshop[1]

● To produce concrete interface proposal and prove 
feasibility, started writing a prototype implementation

● Prototype uses C++/Boost, written outside of Gaudi
– Enables faster progress towards AIDA-2020 milestone

– More interesting for the linear collider community

● Focus so far: transient condition storage

[1] https://indico.cern.ch/event/464394/contributions/2344285/attachments/1370811/2078980/Conditions_20161114.pdf

https://indico.cern.ch/event/464394/contributions/2344285/attachments/1370811/2078980/Conditions_20161114.pdf


4

Problem statement

● Some entities produce and consume condition data
– IO services, algorithms...

● Other entities hold condition data in RAM
– DetectorStore, DD4Hep, ATLAS ConditionStore...

● We shouldn't need to know or care who does what
– Provide standard interface to condition storage

– Use handles for data access & dependency tracking



5

TransientConditionStorageSvc

● Standardized interface to in-RAM condition storage
● Sets storage bounds (N sets of conditions/unbounded)
● Tracks condition producers & consumers

– Can provide this information to the Gaudi scheduler

● Manages condition storage for events
● Abstracts storage using handles and slots

– Handle = “Mean to read or write a condition”

– Slot = “One version of the condition data”



6

Bounded condition storage

● Query implementation capabilities

● Setup condition storage accordingly

● Monitor storage usage



7

Condition dataflow tracking

● Register condition readers and writers...

● ...with configuration error checking!



8

Condition data access

● Conditions are accessed via thread- and type-safe handles

● WriteHandles can put condition data into storage

● ReadHandles access this data by const reference



9

A storage allocation caveat

● Imagine that a new event comes, and we cannot give it a 
condition storage slot yet
– Classic scenario: all condition slots are used up

– Other scenarios exist if condition slot initialization is 
asynchronous (e.g. done by CondAlgs)

● What should we do?
– Return an error code? (Forces client to poll, less efficient)

– Block the event scheduling thread? (May deadlock)

– Best strategy depends on scheduler implementation!



10

Taking a third option

● The client knows best what to do, so let it choose
● C++ Concurrency TS futures give it many possibilities

– Poll slot allocation status: is_ready()

– Wait for slot allocation to complete: get()

– Execute code once the slot is ready: then()

– No extra threads needed, mutexes are optional

● Sadly not a priority of the C++ standard committee...
– ...but an implementation is available in Boost::Thread



11

Storage management interface

● Condition storage is requested asynchronously...

● ...and disposed of after use[2]

● Behind the scenes, clever machinery can be used to avoid 
storage and effort duplication:

– Events reuse entire condition slots when they fit

– New slots reuse matching data from other slots

– Condition data is accessed by shared_ptr

[2] This step could be automated by making ConditionSlotID an RAII wrapper



12

Transient storage status

● Transient storage prototype is now implemented
● Proves (efficient) feasibility of abstract condition storage
● More work will obviously be needed for Gaudi integration

– Interface consistency with event data storage

– Format of the dataflow report to Gaudi scheduler

– Mechanism to signal cached/missing conditions

– Component/condition identifiers, time representation...

● All the data is there, it just needs to be formatted right



13

Outlook

● So far, shown that we can store conditions in RAM and tell 
Gaudi how to schedule producers and consumers

● Also need example of producer/consumer components
– Show how interface makes it easy to manipulate conditions

– If we stumble upon anything complicated, simplify it

● Provide a basic outline of Gaudi scheduler integration
– Helps define our requirements for said integration

● Prototype should be complete in time for mid-January
● Gaudi & experiment integration to come after that



14

Thanks for your attention
Prototype code @ https://gitlab.cern.ch/hgraslan/conditions-prototype

https://gitlab.cern.ch/hgraslan/conditions-prototype

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14

