L]
universite
PARIS-SACLAY

Transient condition storage

Hadrien Grasland
LAL — Orsay

- This project has received funding from the European Union’s Horizon 2020 Research and Innovation programme under Grant Agreement no. 654168.



Introduction

* Review of the ATLAS ICondSvc proposal revealed a
number of fundamental shortcomings:

- Design is complex and largely undocumented
- Leaks many implementation details
— Strongly tied to ATLAS infrastructure

* Benedikt and | hence decided to propose a new interface:
- Take into account ATLAS' use cases and requirements
- Design interface so that it can wrap ATLAS infrastructure
- But account better for the wider Gaudi ecosystem



Interface design process

High-level overview given at LHCb computing workshop!'!

To produce concrete interface proposal and prove
feasibility, started writing a prototype implementation

Prototype uses C++/Boost, written outside of Gaudi
- Enables faster progress towards AIDA-2020 milestone
- More interesting for the linear collider community

Focus so far: transient condition storage

[1] https://indico.cern.ch/event/464394/contributions/2344285/attachments/1370811/2078980/Conditions_20161114.pdf


https://indico.cern.ch/event/464394/contributions/2344285/attachments/1370811/2078980/Conditions_20161114.pdf

Problem statement

e Some entities produce and consume condition data
- |0 services, algorithms...
* Other entities hold condition data in RAM
- DetectorStore, DD4Hep, ATLAS ConditionStore...
 We shouldn't need to know or care who does what

- Provide standard interface to condition storage

- Use handles for data access & dependency tracking



TransientConditionStorageSvc

Standardized interface to in-RAM condition storage
Sets storage bounds (N sets of conditions/unbounded)
Tracks condition producers & consumers

— Can provide this information to the Gaudi scheduler
Manages condition storage for events

Abstracts storage using handles and slots

- Handle = “Mean to read or write a condition”
- Slot = “One version of the condition data”



Bounded condition storage

* Query implementation capabilities

// This method indicates the maximum storage capacity supported by the active implementation.
// If no conceptual limit exists, UNBOUNDED_ STORAGE will be returned.
static size_t max_capacity();

« Setup condition storage accordingly

TransientConditionStoragesSvc( ConditionSvc & conditionService,
const size_t capacity );
class UnsupportedStorageCapacity : public ConditionPrototypeException { };

 Monitor storage usage

// This method indicates how many condition storage slots are currently available.

// If no conceptual limit exists, UNBOUNDED_ STORAGE will be returned.
size_t availableStorage();



Condition dataflow tracking

Register condition readers and writers...

// By requesting a read handle, a Gaudi component notifies the condition management infrastructure that
// its execution should be scheduled after the corresponding condition is produced.
template< typename T =

ConditionReadHandle<T> getReadAccess( const detail::ConditionUserID & client,
const detail::ConditionID & targetID,
const ConditionKind targetkKind )};

// By requesting a write handle, a Gaudi component identifies itself as the producer of a condition.
template< typename T =

ConditionWriteHandle<T> getWriteAccess( const detail::ConditionUserID & client,
const detail::ConditionID & targetID,
const ConditionKind targetkKind };

...with configuration error checking!

// Condition type checking errors will be reported as follows
class InconsistentConditionType : public ConditionPrototypeException { };

/[ Attempts to register two writers for a single condition will be reported as follows
class WriterAlreadyRegistered : public ConditionPrototypeException { };



Condition data access

Conditions are accessed via thread- and type-safe handles

template< typename T =
class ConditionReadHandle

public:

// Condition handles are movable, but not copyable

ConditionReadHandle( const ConditionReadHandle & ) = delete;
ConditionReadHandle( ConditionReadHandle && other ) = default;
ConditionReadHandle & operator=( const ConditionReadHandle & ) = delete;
ConditionReadHandle & operator=( ConditionReadHandle && other ) = default;

WriteHandles can put condition data into storage

// Tell whether the condition is set or needs to be (re)generated
bool exists( const ConditionSlotID slot ) const;

// Set the wvalue of the condition
void put( const ConditionSlotlID slot,
ConditionData<T> && value ) const;
class ConditionAlreadySet : public ConditionPrototypeException { };

ReadHandles access this data by const reference

/| Provide read-only access to the condition data
const ConditionData<T> & get( const ConditionSlotID slot ) const;



A storage allocation caveat

« Imagine that a new event comes, and we cannot give it a
condition storage slot yet

- Classic scenario: all condition slots are used up

- Other scenarios exist if condition slot initialization is
asynchronous (e.g. done by CondAlgs)

* What should we do?
- Return an error code? (Forces client to poll, less efficient)
- Block the event scheduling thread? (May deadlock)
- Best strategy depends on scheduler implementation!



Taking a third option

* The client knows best what to do, so let it choose
e C++ Concurrency TS futures give it many possibilities
- Poll slot allocation status: is_ready()
- Wait for slot allocation to complete: get()
- Execute code once the slot is ready: then()
- No extra threads needed, mutexes are optional
« Sadly not a priority of the C++ standard committee...

- ...but an implementation is available in Boost::Thread

10



Storage management interface

« Condition storage is requested asynchronously...

cpp_next::future<ConditionSlotID> allocateSlot( const detail::TimePoint & eventTimestamp );

 ...and disposed of after usel

void liberateSlot( const ConditionSlotID slot );

« Behind the scenes, clever machinery can be used to avoid
storage and effort duplication:

- Events reuse entire condition slots when they fit
- New slots reuse matching data from other slots
- Condition data is accessed by shared_ptr

[2] This step could be automated by making ConditionSlotID an RAIl wrapper 11



Transient storage status

Transient storage prototype is now implemented

Proves (efficient) feasibility of abstract condition storage
More work will obviously be needed for Gaudi integration
- Interface consistency with event data storage

- Format of the dataflow report to Gaudi scheduler

- Mechanism to signal cached/missing conditions

- Component/condition identifiers, time representation...

All the data is there, it just needs to be formatted right

12



Outlook

So far, shown that we can store conditions in RAM and tell
Gaudi how to schedule producers and consumers

Also need example of producer/consumer components

- Show how interface makes it easy to manipulate conditions
- If we stumble upon anything complicated, simplify it
Provide a basic outline of Gaudi scheduler integration

- Helps define our requirements for said integration
Prototype should be complete in time for mid-January
Gaudi & experiment integration to come after that

13



Thanks for your attention

Prototype code @ https://gitlab.cern.ch/hgraslan/conditions-prototype


https://gitlab.cern.ch/hgraslan/conditions-prototype

	Diapo 1
	Diapo 2
	Diapo 3
	Diapo 4
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Diapo 13
	Diapo 14

