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Precision Measurements

mt = 172.84± 0.70
mt = 172.44± 0.49
mt = 174.34± 0.64Tevatron (2014)

CMS Run-1(2015)

ATLAS Run-1(2016)

GeV

0.3% syst. & 0.07% stat. !

This talk is about another 
source of uncertainty:

What mass is it? or 

How precisely do we know 
the mass definition?

�mt � 1 GeVestimate:

Tevatron (2014): mt = 174.34 ± 0.64 GeV 
CMS Run 1 (2015): mt = 172.44 ± 0.49 GeV 
ATLAS Run 1 (2016): mt = 172.84 ± 0.70 GeV 

Precision Measurements
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Reconstruction at LHC and ILC

ATLAS (l+jets)
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�s

mb,mc
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The functions ωi(s) entering ωi
T,L(s) contain all the de-

pendence on
√

s, which cancels in the q2 spectrum. All
ln(µ/mb) terms that usually appear in the functions
ω77,79

i (s) have been moved into C7 (along with the ap-
propriate constant term contained in mb/m1S

b ).

The χj
i (s) containing the O(1/m2

b) corrections in
Eq. (13) can be extracted from Ref. [24]:

χ99
T (s) = −

λ1 + 3λ2

6

5 + 3s

1 − s
− 2λ2

s(4 − 3s)

(1 − s)2
,

χ90
A (s) =

λ1 + 3λ2

6

3 + s(2 + 3s)

(1 − s)2
− 2λ2

3 + s(4 − 3s)

(1 − s)2
,

χ99
L (s) =

λ1 + 3λ2

6

3 + 13s

1 − s
− 2λ2

s2

(1 − s)2
,

χ77
T (s) =

λ1 + 3λ2

6

3 + 5s

1 − s
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3 − 2s2

(1 − s)2
,

χ77
L (s) = −
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13 + 3s
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s(4 − 3s)

(1 − s)2
,

χ79
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λ1 + 3λ2

2
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5 − 3s2
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,

χ70
A (s) =
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. (A17)

APPENDIX B: NUMERICAL INPUTS

In this Appendix we collect all of our numerical inputs.
All values are taken from Ref. [38] except where stated
otherwise. To evaluate the Wilson coefficients we use

mW = 80.403 GeV ,

sin2 θW = 0.23122 ,

mpole
t = (171.4± 2.1)GeV ,

αs(mZ) = 0.1176 ,

µc
0 = 80 GeV ,

µt
0 = 120 GeV . (B1)

µ = 2.35 GeV µ = 4.7 GeV µ = 9.4 GeV

αs(µ) 0.2659 0.2140 0.1793

C1(µ) −0.4642 −0.2880 −0.1506

C2(µ) 1.019 1.007 1.001

C3(µ) −0.0096 −0.0043 −0.0017

C4(µ) −0.1247 −0.0795 −0.0508

C5(µ) 0.00069 0.00029 0.00009

C6(µ) 0.00205 0.00081 0.00026

C8(µ) −0.2012 −0.1778 −0.1598

mb(µ) 4.703 4.120 3.707

C7(µ) −0.3637 −0.3293 −0.2982

C7 −0.2435 −0.2611 −0.2687

C9(µ) 4.504 4.209 3.790

C9 4.258 4.207 4.188

C10 −4.175 −4.175 −4.175

TABLE I: Values of the Wilson coefficients to O(αs) at dif-
ferent low scales µ.

Here, µc,t
0 are the matching scales in the charm and top

sector, respectively, and we use the same values as in
Ref. [19]. For the top-quark mass we use the newest CDF
and D0 average [43]. The resulting values for the Wilson
coefficients at O(αs) run down to the low scale and the
corresponding values for the Ci according to Eq. (A2) are
listed in Table I. Note that the residual scale uncertainties
of C7 and especially C9 are much smaller than those of
C7,9(µ). We use a Mathematica code by Bobeth with
the initial conditions and renormalization group running
as given in Refs. [19, 20]. For C9(µ) this requires the
three-loop mixings calculated in Refs. [44].

In the decay rates we use

αem(mb) = 1/133 ,

|VtbV
∗
ts| = 41.09 × 10−3 ,

mB = 5.279 GeV ,

τB = 1.584 ps ,

mK∗ = 0.892 GeV ,

mb ≡ m1S
b = (4.70 ± 0.04)GeV ,

⇥m � �s(�)�

mpole
t = mschemeA

t (1 + �s + �2
s + . . .)

mpole
t = mschemeB

t + R (�s + �2
s + . . .)

mt = 172.6± 0.8(stat)± 1.1(syst) GeV

7

What is the top mass?

• Top is colored parton.

• Top mass is a parameter of the Lagrangian.

• Top mass is renormalization scheme dependent.

Which top mass?

• Which mass scheme is being measured in kinematic reconstruction methods?

• Mass extracted corresponds to the Monte Carlo (MC) mass.

The Top Quark Mass

• How can one relate the MC mass to a well-defined 
renormalization scheme?
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We propose a factorization framework, for a precision extraction of the top quark mass at the LHC,
for the dijet process initiated by the partonic processes qq̄, gg ! tt̄. The observable has a well-defined
relationship to the Lagrangian top mass parameter in the “top resonance” mass schemes, that can be
related to the better-known MS mass. The factorization framework gives a controlled description of
the impact of perturbative corrections, resummation, initial and final state radiation, and non-
perturbative soft e↵ects. The observable measures the invariant mass distributions of boosted
hadronic top jets in the peak region. Boosted top jets are characterized by a large jet transverse
momentum pTt � mt and the peak region corresponds to M2

Jt,Jt̄
� m2

t ⇠ mt�t + pTt ⇤QCD ⌧ m2
t ,

where MJt,Jt̄
,mt, and �t denote the top/anti-top jet mass, the top quark mass, and the top width

respectively. Factorization is derived using a combination of the Soft-Collinear E↵ective Theory
(SCET) and the Heavy Quark E↵ective Theory (HQET). It ties together the physics of the disparate
scales pJT � mt � �t ⇠> ⇤QCD and allows for a reliable field-theoretic interpretation of a precision
top mass extraction.

PACS numbers: 12.38.Bx, 12.38.Cy, 12.39.St, 24.85.+p

Introduction: The top quark is the heaviest particle
in the Standard Model (SM), it decays before hadroniza-
tion, and has a large coupling to the Higgs sector, making
detailed studies of its properties particularly interesting.
The top quark massmt is a fundamental parameter of the
SM, playing an important role in electroweak precision
fits and constraining new physics beyond the SM. The
most precise value of the top mass, based on an average
of all published Tevatron [1] measurements, is

mtev
t = 173.07± 0.52(stat)± 0.72(syst) GeV. (1)

A combined average value from LHC experiments is ex-
pected to appear in the 2014 Particle Data Group (PDG)
edition.

The major theoretical issue facing precision top mass
extractions (�mt ⇠ 1 GeV) at hadron colliders, is a
field-theoretically well-defined relationship between the
experimentally measured value and the Lagrangian top
mass parameter mt, which is a renormalization scale and
scheme dependent quantity. How does one determine
whether the experimentally quoted value corresponds to
a pole mass, MS mass, or some other mass scheme? Ex-
perimental measurements have been made in the lep-
ton+jets, dilepton, and all hadronic channels at the Teva-
tron and the LHC. The analyses rely on a comparison
of data with Monte Carlo (MC) simulations and the
extracted value corresponds to the top mass definition
(mMC

t ) implemented in the MC. A field-theoretic inter-
pretation ofmMC

t and the corresponding mass scheme, re-
quires it to be interpreted in the context of a factorization
framework specific to each experimental observable. Such
an interpretation of mMC

t for the all hadronic channel has
been suggested [2], based on arguments adopted from
a factorization framework [? ] developed for boosted
hadronic top jets in e+e� ! tt̄X at a future high en-
ergy e+e� collider. However, the relevant factorization

framework appropriate to hadron colliders is still lack-
ing; consequently, so is a rigorous interpretation of mMC

t .
Defining a hadron collider observable and the correspond-
ing factorization framework with a clear relationship to
the Lagrangian mass parameter mt, is the main focus on
this work.
The pole-mass can be related to any other top mass

scheme mt(R,µ) as

mpole
t = mt(R,µ) + �mt(R,µ), (2)

where �mt(R,µ) has a perturbative expansion

�mt(R,µ) = R
1X

n=1

nX

k=0

ank

h↵s(µ)

4⇡

in
lnk

µ

R
, (3)

where the ank are numerical coe�cients and the one-
dimensional parameter R labels the mass scheme. It is
well-known that the pole mass scheme su↵ers from the
infrared renormalon problem, which introduces an inher-
ent ambiguity of order ⇤QCD in its definition. An ap-
propriate choice of R, and the corresponding coe�cients
ank, avoids this problem and corresponds to a short-

distance mass scheme. The MS scheme and the “top
resonance schemes” [2] are examples of short-distance
schemes with R ⇠ mt and R ⇠ �t respectively. Con-
verting between di↵erent schemes with widely separated
values of R can introduce large logarithms which can be
resummed through infrared renormalization group equa-
tions [? ]. Di↵erent mass schemes are appropriate for dif-
ferent experimental observables and this must be taken
into account in the theoretical interpretation of data.
Factorization Framework : In this paper, we consider

top quark dijet production at the LHC in the all-hadronic
channel. We present a factorization framework for the
invariant mass distribution of boosted hadronic top jets
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related to the better-known MS mass. The factorization framework gives a controlled description of
the impact of perturbative corrections, resummation, initial and final state radiation, and non-
perturbative soft e↵ects. The observable measures the invariant mass distributions of boosted
hadronic top jets in the peak region. Boosted top jets are characterized by a large jet transverse
momentum pTt � mt and the peak region corresponds to M2

Jt,Jt̄
� m2

t ⇠ mt�t + pTt ⇤QCD ⌧ m2
t ,

where MJt,Jt̄
,mt, and �t denote the top/anti-top jet mass, the top quark mass, and the top width

respectively. Factorization is derived using a combination of the Soft-Collinear E↵ective Theory
(SCET) and the Heavy Quark E↵ective Theory (HQET). It ties together the physics of the disparate
scales pJT � mt � �t ⇠> ⇤QCD and allows for a reliable field-theoretic interpretation of a precision
top mass extraction.

PACS numbers: 12.38.Bx, 12.38.Cy, 12.39.St, 24.85.+p

Introduction: The top quark is the heaviest particle
in the Standard Model (SM), it decays before hadroniza-
tion, and has a large coupling to the Higgs sector, making
detailed studies of its properties particularly interesting.
The top quark massmt is a fundamental parameter of the
SM, playing an important role in electroweak precision
fits and constraining new physics beyond the SM. The
most precise value of the top mass, based on an average
of all published Tevatron [1] measurements, is

mtev
t = 173.07± 0.52(stat)± 0.72(syst) GeV. (1)

A combined average value from LHC experiments is ex-
pected to appear in the 2014 Particle Data Group (PDG)
edition.

The major theoretical issue facing precision top mass
extractions (�mt ⇠ 1 GeV) at hadron colliders, is a
field-theoretically well-defined relationship between the
experimentally measured value and the Lagrangian top
mass parameter mt, which is a renormalization scale and
scheme dependent quantity. How does one determine
whether the experimentally quoted value corresponds to
a pole mass, MS mass, or some other mass scheme? Ex-
perimental measurements have been made in the lep-
ton+jets, dilepton, and all hadronic channels at the Teva-
tron and the LHC. The analyses rely on a comparison
of data with Monte Carlo (MC) simulations and the
extracted value corresponds to the top mass definition
(mMC

t ) implemented in the MC. A field-theoretic inter-
pretation ofmMC

t and the corresponding mass scheme, re-
quires it to be interpreted in the context of a factorization
framework specific to each experimental observable. Such
an interpretation of mMC

t for the all hadronic channel has
been suggested [2], based on arguments adopted from
a factorization framework [? ] developed for boosted
hadronic top jets in e+e� ! tt̄X at a future high en-
ergy e+e� collider. However, the relevant factorization

framework appropriate to hadron colliders is still lack-
ing; consequently, so is a rigorous interpretation of mMC

t .
Defining a hadron collider observable and the correspond-
ing factorization framework with a clear relationship to
the Lagrangian mass parameter mt, is the main focus on
this work.
The pole-mass can be related to any other top mass

scheme mt(R,µ) as

mpole
t = mt(R,µ) + �mt(R,µ), (2)

where �mt(R,µ) has a perturbative expansion

�mt(R,µ) = R
1X

n=1

nX

k=0

ank

h↵s(µ)

4⇡

in
lnk

µ

R
, (3)

where the ank are numerical coe�cients and the one-
dimensional parameter R labels the mass scheme. It is
well-known that the pole mass scheme su↵ers from the
infrared renormalon problem, which introduces an inher-
ent ambiguity of order ⇤QCD in its definition. An ap-
propriate choice of R, and the corresponding coe�cients
ank, avoids this problem and corresponds to a short-

distance mass scheme. The MS scheme and the “top
resonance schemes” [2] are examples of short-distance
schemes with R ⇠ mt and R ⇠ �t respectively. Con-
verting between di↵erent schemes with widely separated
values of R can introduce large logarithms which can be
resummed through infrared renormalization group equa-
tions [? ]. Di↵erent mass schemes are appropriate for dif-
ferent experimental observables and this must be taken
into account in the theoretical interpretation of data.
Factorization Framework : In this paper, we consider

top quark dijet production at the LHC in the all-hadronic
channel. We present a factorization framework for the
invariant mass distribution of boosted hadronic top jets

• Different schemes correspond to different coefficients and values for “R” 
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A short-distance heavy quark mass depends on two parameters, the renormalization scale µ con-
trolling the absorption of ultraviolet fluctuations into the mass, and a scale R controlling the ab-
sorption of infrared fluctuations. 1/R can be thought of as the radius for perturbative corrections
that build up the mass beyond its point-like definition in the pole scheme. Treating R as a variable
gives a renormalization group equation. We argue that the sign of this anomalous dimension is
universal: increasing R to add IR modes decreases m(R). The flow improves the stability of con-
versions between mass schemes, allowing us to avoid large logs and the renormalon. The flow in R
can be used to study IR renormalons without using bubble chains, and we use it to determine the
coefficient of the O(ΛQCD) renormalon ambiguity of the pole mass with a convergent sum-rule.

The pole-mass, mpole, provides a simple definition of
a mass-parameter in perturbative quantum field theory,
corresponding to the location of the single particle pole
in the two-point function. For the electron mass in
QED mpole is used almost exclusively, but for quarks
in QCD there are two reasons it is impractical. First,
at high energies, large logs appear which spoil pertur-
bation theory with mpole. This problem is cured by in-
troducing the concept of a running-mass m(µ), where
the renormalizaton group (RG) flow in µ is controlled
by a mass-anomalous dimension. The second, and more
serious problem, is that due to confinement there is no
pole in the quark-propagator in non-perturbative QCD.
Thus the concept of a quark pole-mass is ambiguous by
∆mpole ∼ ΛQCD. This ambiguity appears as a linear sen-
sitivity to infrared momenta in Feynman diagrams, and
results in a diverging perturbation series for any observ-
able expressed in terms of mpole, with terms ∼ 2nn! αn+1

s
asymptotically for large n. For the heavy quark masses
(charm, bottom, top) that we study, this behavior is re-
ferred to as the pole-mass O(ΛQCD) renormalon prob-
lem [1], where the Borel transform of the series has a
singularity at u = 1/2. Schemes without this infrared
problem are known as short-distance masses, and always
depend on an additional infrared scale R.

Typically, R is considered as intrinsic to the short-
distance quark mass definition, mR(µ). Examples are

MS : m(µ), R = m(µ); (1)

RGI [2] : mRGI, R = mRGI;

kinetic [3] : mkin, R = µkin
f ;

1S [4] : m1S, R = m1SCF αs(µ);

PS [5] : mPS, R = µPS
f .

where CF = 4/3. Many schemes have R = m, but this
is not generic. For instance, the 1S-mass is defined as
one-half the mass of the heavy quarkonium 3S1 state in
perturbation theory, and its R is of order the inverse Bohr
radius. In the kinetic and the potential subtraction (PS)
schemes R is set by cutoffs, µkin

f and µPS
f , on integrals

over a heavy-quark correlator and the heavy-quark static
potential respectively. Depending on the scales involved
in a process, schemes with a specific range of µ and R are
most appropriate to achieve stable perturbative results.

The goal of this letter is to consider R as a contin-
uous parameter, and study the RG flow in R of masses
m(R, µ) = mR(µ). We consider converting between mass
schemes mA(R, µ) and mB(R′, µ) where R ≪ R′. To
avoid the O(ΛQCD) renormalon in fixed-order perturba-
tion theory a common expansion in αs(µ) must be used,
which inevitably introduces large logs, ln(R′/R). The
RGE in R allows mass-scheme conversions to be done
avoiding both large logs and the renormalon. We show
this improves the stability of conversions between the
MS scheme with R = m, and low energy schemes with
R ≪ m that are extensively used for high precision deter-
minations of heavy quark masses [6]. The solution of this
RGE is also used to systematically derive a convergent
series for the normalization of the u = 1/2 singularity in
the pole-mass Borel transform.

To start, translate the bare-quark mass in QCD to
the pole-mass, mbare = Zmmpole, where UV divergences
from scales p2 ≫ m2 appear in the mass-renormalization
constant Zm. The difference between using mpole and
any other scheme m(R, µ) corresponds to specifying ad-
ditional finite subtractions, δm(R, µ). Let

mpole = m(R, µ) + δm(R, µ) , (2)

δm(R, µ) = R
∞
∑

n=1

n
∑

k=0

ank

[αs(µ)

4π

]n
lnk

( µ

R

)

.

Here ank are numbers, and αs is in the MS-scheme with

dαs(µ)

d lnµ
= β[αs(µ)] = −2αs(µ)

∞
∑

n=0

βn

[αs(µ)

4π

]n+1
. (3)

We will only consider gauge independent short-distance
mass schemes for m(R, µ), where δm eliminates the in-
frared ambiguity associated to the pole mass. This re-
quires that a(n+1)0 ∼ 2nn! asymptotically for large n.

Top Mass Schemes

(Fleming, Hoang, SM, Stewart)
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a non-trivial dependence on the scheme choice �mt ap-
pears in the BHQET functions at NLO. Consistency with
power counting in BHQET, dictates that the appropriate
mass scheme correspond to the class of “top resonance”
schemes where

R ⇠ �t, (35)

in Eq. (17). Thus, at NLO top resonance mass schemes
correspond to �mNLO

t ⇠ ↵s(µ ⇠ �t) �t and di↵er from
the MS scheme which satisfies �mNLO

t ⇠ ↵s(µ ⇠ mt)mt.
Converting between these schemes using Eq. (16) intro-
duces large logarithms of �t/mt which can be resummed
using an infrared renormalization group equation [? ].

The shape and peak position of the top jet invariant
mass distribution is also modified via the convolutions of
the BHQET functions with the soft function. In particu-
lar, non-perturbative e↵ects in the soft function, shift and
broaden the peak structure [? ] even at tree-level. The
soft radiation grouped with the beam-jet is integrated up
to a pertubative scale Mcut. On the other hand, since we
are di↵erential in the invariant mass distributions of the
top jets, the soft radiation in top jet sector is sensitive to
non-perturbative e↵ects. We model the non-perturbative
e↵ects by writing the soft function as a convolution, in
the momenta associated with the top/anti-top jet sectors,
of a model function with the partonic soft function [? ]

S(`a, `b, `t, `t̄, {µSi}) =
Z

d`0t

Z
d`0t̄ (36)

Spart.(`a, `b, `t � `0t, `t̄ � `0t̄, {µSi})Smod.(`
0
t, `

0
t̄),

where the model function satisfies the normalization con-

dition
Z

d`t

Z
d`t̄ Smod.(`t, `t̄) = 1. (37)

We parameterize the model function in terms of the pa-
rameters a, b⇤ as

Smod.(`
+, `�) = ✓(`+)✓(`�)

N (a, b,⇤)

⇤2

⇣`+`�

⇤2

⌘a�1

exp
h�2`+ � 2`� � 2b

p
`+`�

⇤

i
,

(38)

where N (a, b,⇤) is a normalization factor chosen to sat-
isfy the normalization condition in Eq. (36). We note
that the model function Smod. is universal in that the
same function appears in the invariant mass distribu-
tions of massless jets. The di↵erence between massless
jets and top jets arise from the perturbative scale mt,
which is accounted for the perturbative mt dependence
in the factorization formula.
At NLL the factorization formula takes the form

d�

dM2
Jt
dM2

Jt̄
d⌘td⌘t̄dp

T
t

=
pTt m

2
t

16⇡Q2Ninit.

1

QtQt̄

K(Mcut, µSa , µa)K(Mcut, µSb , µb)
4

x⇤
ax

⇤
bQ

2
fa(x

⇤
a, µa)fb(x

⇤
b , µb)

Tr
h
Ĥb(ŝ, t̂, û, {µSi};µt;µH)Ŝ

i Z
dŝt

Z
dŝt̄ P (ŝt)P (ŝt̄)

Smod.(
M2

Jt
�m2

t

Qt
� mt

Qt
ŝt,

M2
Jt̄

�m2
t

Qt̄
� mt

Qt̄
ŝt̄),

(39)

where we have integrated the beam jet masses up toMcut.
In Fig. ?? we show...
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What makes certain schemes better (worse) than others?

• MSR Mass
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4↵s(µ)
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X

Cn

⇣�0↵s(µ)
2

4⇡

⌘n

(10)

Cn =

Z 1

0

dx( ln
1

x
)

n
(11)

Cn = 2

nn! (large n) (12)

n0 ⇠ 2⇡

�0↵s(µ2
)

(13)

�(mpole
t �mt(µ)) ⇠ 8

3�0

µ exp

n

� 2⇡

�0↵s(µ)

o

⇠ 8

3�0

⇤QCD (14)

mpole
= m(R, µ) + �m(R, µ) (15)

�m(R, µ) = R

1
X

n=1

n
X

k=0

ank

h↵s(µ)

4⇡

i

ln

k
⇣ µ

R

⌘

(16)

mpole
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1
X

n=1

n
X

k=0

ank

h↵s(µ)

4⇡

i

ln
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No ambiguity, R > ΛQCD

Compatible with Breit Wigner, R ~ Γt

13

Mass Definitions:

MassMS• make a “minimal subtraction”

k�

µ=mt

dk

mt

mpole
t = mt + 0.4 �smt + . . .�

7 GeV � �t = 1.4 GeV

Not compatible with Breit Wigner.No Ambiguity.

• MSR Mass

a mass which nicely interpolates

mMSR(R)

No Ambiguity

Breit Wigner

(Hoang, Jain, Scimemi, IS, 2008)
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Hoang, Jain, Scimemi, Stewart 2008

Nicely interpolates

Define using MS coe�cients ank

0.6 Scheme choice

How does the choice of scheme a↵ect
the accuracy of the measurement?

Certain schemes are better than others.

Bottom quark decay width example:

[Hoang, Ligeti, Manohar hep-ph/9809423]

0.7 Short distance schemes

Renormalons

Short Distance Schemes

Renormalon ambiguity in the definition of pole mass.
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We propose a factorization framework, for a precision extraction of the top quark mass at the LHC,
for the dijet process initiated by the partonic processes qq̄, gg ! tt̄. The observable has a well-defined
relationship to the Lagrangian top mass parameter in the “top resonance” mass schemes, that can be
related to the better-known MS mass. The factorization framework gives a controlled description of
the impact of perturbative corrections, resummation, initial and final state radiation, and non-
perturbative soft e↵ects. The observable measures the invariant mass distributions of boosted
hadronic top jets in the peak region. Boosted top jets are characterized by a large jet transverse
momentum pTt � mt and the peak region corresponds to M2

Jt,Jt̄
� m2

t ⇠ mt�t + pTt ⇤QCD ⌧ m2
t ,

where MJt,Jt̄
,mt, and �t denote the top/anti-top jet mass, the top quark mass, and the top width

respectively. Factorization is derived using a combination of the Soft-Collinear E↵ective Theory
(SCET) and the Heavy Quark E↵ective Theory (HQET). It ties together the physics of the disparate
scales pJT � mt � �t ⇠> ⇤QCD and allows for a reliable field-theoretic interpretation of a precision
top mass extraction.

PACS numbers: 12.38.Bx, 12.38.Cy, 12.39.St, 24.85.+p

Introduction: The top quark is the heaviest particle
in the Standard Model (SM), it decays before hadroniza-
tion, and has a large coupling to the Higgs sector, making
detailed studies of its properties particularly interesting.
The top quark massmt is a fundamental parameter of the
SM, playing an important role in electroweak precision
fits and constraining new physics beyond the SM. The
most precise value of the top mass, based on an average
of all published Tevatron [1] measurements, is

mtev
t = 173.07± 0.52(stat)± 0.72(syst) GeV. (1)

A combined average value from LHC experiments is ex-
pected to appear in the 2014 Particle Data Group (PDG)
edition.

The major theoretical issue facing precision top mass
extractions (�mt ⇠ 1 GeV) at hadron colliders, is a
field-theoretically well-defined relationship between the
experimentally measured value and the Lagrangian top
mass parameter mt, which is a renormalization scale and
scheme dependent quantity. How does one determine
whether the experimentally quoted value corresponds to
a pole mass, MS mass, or some other mass scheme? Ex-
perimental measurements have been made in the lep-
ton+jets, dilepton, and all hadronic channels at the Teva-
tron and the LHC. The analyses rely on a comparison
of data with Monte Carlo (MC) simulations and the
extracted value corresponds to the top mass definition
(mMC

t ) implemented in the MC. A field-theoretic inter-
pretation ofmMC

t and the corresponding mass scheme, re-
quires it to be interpreted in the context of a factorization
framework specific to each experimental observable. Such
an interpretation of mMC

t for the all hadronic channel has
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0.6 Scheme choice

How does the choice of scheme a↵ect
the accuracy of the measurement?

Certain schemes are better than others.

Bottom quark decay width example:

[Hoang, Ligeti, Manohar hep-ph/9809423]

0.7 Short distance schemes

Renormalons

Short Distance Schemes

Renormalon ambiguity in the definition of pole mass.
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Direct Reconstruction Methods (Tevatron & LHC)

Use Monte Carlo Templates from Simulations

Use Monte Carlo Simulations for templates 
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Top Mass Measurement

Extract top mass mt from
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problem due to non-perturbative e↵ects of
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• Template method
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• Threshold scan at an e+e� collider
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FIG. 5. Comparison of Q2
t R

v with fixed M1S
t mass for the fixed order and resummed expansions.

The dotted, dashed, and solid curves in a) are LO, NLO, and NNLO, and in b) are LL, NLL, and
NNLL order. For each order four curves are plotted for ν = 0.1, 0.125, 0.2, and 0.4.

√
s (GeV) 347 350 353

Q2
t R

v
LL ν = 0.1 0.387 1.556 1.276

ν = 0.125 0.355 1.411 1.215

ν = 0.2 0.302 1.175 1.105
ν = 0.275 0.276 1.054 1.043
ν = 0.4 0.251 0.940 0.980

Q2
t R

v
NLL ν = 0.1 0.230 0.881 0.770

ν = 0.125 0.237 0.917 0.804
ν = 0.2 0.243 0.944 0.835
ν = 0.275 0.242 0.937 0.837

ν = 0.4 0.237 0.912 0.827

Q2
t R

v
NNLL ν = 0.1 0.237 0.888 0.842

ν = 0.125 0.240 0.920 0.836
ν = 0.2 0.244 0.955 0.841

ν = 0.275 0.245 0.961 0.845
ν = 0.4 0.244 0.955 0.846

TABLE I. Numerical values of Q2
t R

v which appear in the NNLL results in Fig. 5b.

VII. DISCUSSION

In this section we carry out a detailed analysis of Rv and Ra in the 1S mass scheme with
the main emphasis on assessing the remaining theoretical uncertainties in our computation.
In Fig. 5 we have displayed results for Q2

tR
v over the c.m. energy

√
s for M1S

t = 175 GeV,
αs(mZ) = 0.118 and Γt = 1.43 GeV. For the strong coupling four-loop running is employed
and all light quark flavors (nf = 5) are taken massless. Fig. 5a shows results at LO (dotted
blue lines), NLO (dashed green lines) and NNLO (solid red lines), while Fig. 5b shows the
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Top pair-production at threshold

• Shape of cross-section sensitive to top mass.

• Top width provides IR cutoff.

• Non-perturbative effects are small.

Physics well understood

(Fadin, Khoze; Peskin, Strassler;Hoang, Manohar, Stewart, Teubner; Kuhn, 
Martinez, Miquel; Beneke, Kiyo, Schuller; Kniehl,Penin,...)

• NRQCD is the appropriate EFT.

• Well-defined relation to short distance mass; eg.1S mass

• Precision:
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Improving Top Mass Measurement at the LHC

• must use a kinematically 
sensitive LHC observable

• theoretically tractable in QFT,  
mass definition at Lagrangian level.

• control contamination 

Mpeak
t = mt + (nonperturbative e�ects) + (perturbative e�ects)

• Observable must be kinematically sensitive to the Top Mass

• Observable must be theoretically tractable 

• Observable must have well-defined relation to top mass scheme

• Control contamination from hadron collider environment
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Boosted Top Quarks

• Boosted top quarks provide first simplification

• Decay products contained in a “fat” jet 

Kinematic Extraction of a Short Distance Top Mass at the LHC from Jets
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We propose a factorization framework, for a precision extraction of the top quark mass at the LHC,
for the dijet process initiated by the partonic processes qq̄, gg ! tt̄. The observable has a well-defined
relationship to the Lagrangian top mass parameter in the “top resonance” mass schemes, that can be
related to the better-known MS mass. The factorization framework gives a controlled description of
the impact of perturbative corrections, resummation, initial and final state radiation, and non-
perturbative soft e↵ects. The observable measures the invariant mass distributions of boosted
hadronic top jets in the peak region. Boosted top jets are characterized by a large jet transverse
momentum pTt � mt and the peak region corresponds to M2

Jt,Jt̄
� m2

t ⇠ mt�t + pTt ⇤QCD ⌧ m2
t ,

where MJt,Jt̄
,mt, and �t denote the top/anti-top jet mass, the top quark mass, and the top width

respectively. Factorization is derived using a combination of the Soft-Collinear E↵ective Theory
(SCET) and the Heavy Quark E↵ective Theory (HQET). It ties together the physics of the disparate
scales pJT � mt � �t ⇠> ⇤QCD and allows for a reliable field-theoretic interpretation of a precision
top mass extraction.

PACS numbers: 12.38.Bx, 12.38.Cy, 12.39.St, 24.85.+p

�R(W, b) ⇠ 2mt

pT
(1)

mt = 173.1 GeV (2)

⌧2 ! 0 (3)

R
d

dR
m(R) = �R[↵s(R)] (4)

mMSR, (5)

log
R

R0 (6)

R = �t (7)

Introduction: The top quark is the heaviest particle
in the Standard Model (SM), it decays before hadroniza-
tion, and has a large coupling to the Higgs sector, making
detailed studies of its properties particularly interesting.
The top quark massmt is a fundamental parameter of the
SM, playing an important role in electroweak precision
fits and constraining new physics beyond the SM. The
most precise value of the top mass, based on an average
of all published Tevatron [1] measurements, is

mtev
t = 173.07± 0.52(stat)± 0.72(syst) GeV. (8)

A combined average value from LHC experiments is ex-
pected to appear in the 2014 Particle Data Group (PDG)
edition.

The major theoretical issue facing precision top mass
extractions (�mt ⇠ 1 GeV) at hadron colliders, is a
field-theoretically well-defined relationship between the
experimentally measured value and the Lagrangian top
mass parameter mt, which is a renormalization scale and
scheme dependent quantity. How does one determine
whether the experimentally quoted value corresponds to
a pole mass, MS mass, or some other mass scheme? Ex-
perimental measurements have been made in the lep-
ton+jets, dilepton, and all hadronic channels at the Teva-
tron and the LHC. The analyses rely on a comparison
of data with Monte Carlo (MC) simulations and the
extracted value corresponds to the top mass definition
(mMC

t ) implemented in the MC. A field-theoretic inter-
pretation ofmMC

t and the corresponding mass scheme, re-
quires it to be interpreted in the context of a factorization
framework specific to each experimental observable. Such
an interpretation of mMC

t for the all hadronic channel has
been suggested [2], based on arguments adopted from
a factorization framework [? ] developed for boosted
hadronic top jets in e+e� ! tt̄X at a future high en-
ergy e+e� collider. However, the relevant factorization
framework appropriate to hadron colliders is still lack-
ing; consequently, so is a rigorous interpretation of mMC

t .
Defining a hadron collider observable and the correspond-
ing factorization framework with a clear relationship to
the Lagrangian mass parameter mt, is the main focus on
this work.

The pole-mass can be related to any other top mass
scheme mt(R,µ) as

mpole
t = mt(R,µ) + �mt(R,µ), (9)

Rule of thumb for decay products:
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First simplification:

• boosted top quarks,  Q = 2pT � mt

enables us to be inclusive over decay products

production energy >> mt

t
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(b) W ! qq̄

Figure 1: (a) The opening angle between the W and b in top decays, t ! Wb, as a function of the top pT
in simulated PYTHIA Z0 ! tt̄ (mZ0 = 1.6 TeV) events. (b) The opening angle of the W ! qq̄ system
from t ! Wb decays as a function of the W pT. Both distributions are at the particle level.

This note presents the results of a comprehensive study of the performance of jet grooming algo-
rithms using the 2011 ATLAS dataset corresponding to an integrated luminosity of (4.7 ± 0.2) fb�1.
Three jet grooming techniques are studied: mass-drop filtering, trimming, and pruning. These tech-
niques utilize the internal structure of the jet in order to reduce the sensitivity to pile-up and UE, as well
as improve jet mass resolution.

Measurements of groomed jet properties in the presence of pile-up (along with a companion study [1])
are made for jets across a wide range of jet transverse momentum (pjet

T ). Comparisons are made to
generators incorporating leading-order (LO), e.g. PYTHIA [2] and next-to-leading-order (NLO), e.g.
POWHEG [3,4] matrix elements, interfaced to PYTHIA for parton showering and hadronization, as well
as to GEANT4 for full detector simulation.

Section 2 describes the design and implementation of the grooming algorithms used in ATLAS, as
well as the definitions of the various substructure observables discussed throughout the text. The data
samples and Monte Carlo simulation used for comparison are introduced in Section 3. The performance
and validation of jet calibrations for large-R and groomed jets described in Section 4 provide the starting
point necessary to establish the use of these new jet algorithms in physics analyses. Data to MC compar-
isons are then discussed in Section 5 for the jet substructure observables introduced in Section 2. Finally,
Section 6 presents comparisons of grooming algorithms applied to multiple QCD jet events and a sample
selected to contain high pT hadronically-decaying top quarks in data.

2 Jet Grooming Algorithms and Substructure Observables in ATLAS

This section describes jet reconstruction algorithms and presents three jet algorithm modification pro-
cedures studied in ATLAS, referred to as jet “grooming.” Mass-drop filtering, trimming, and pruning
are described and performance measures related to each are defined. The di↵erent configurations of the
grooming algorithms described in this section are summarized in Table 1. Additionally, a technique to
tag boosted top quarks using the mass-drop/filtering method is introduced.

2
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Figure 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane
separating the two hemispheres is perpendicular to the thrust axis and intersects the thrust
axis at the interaction point. The total invariant mass inside each hemisphere is measured.
Our analysis applies equally well to the lepton+jets and the dilepton channels (not shown).

arising from the initial state. Assuming a c.m. energy Q ≫ mt, mt being the top quark
mass, one can employ the hierarchy of scales

Q ≫ mt ≫ Γt > ΛQCD (1)

to establish a factorization theorem for the doubly differential top-antitop invariant mass
distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ≪ m2 . (2)

The invariant masses M2
t = (

∑

i∈Xt
pµ

i )2, M2
t̄ = (

∑

i∈Xt̄

pµ
i )2 depend on a prescription Xt,t̄

which associates final state momenta pµ
i to top and antitop invariant masses, respectively.

For invariant masses in the resonance region the events are characterized by energy deposits
predominantly contained in two back-to-back regions with opening angles mt/Q associated
with the energetic jets or leptons from the top decay plus collinear radiation, and by addi-
tional soft radiation populating the regions between the jets, see Fig. 1. We assume that
the prescriptions Xt,t̄ assign all soft radiation to either M2

t or M2
t̄ where the probability

of radiation being assigned to Xt or Xt̄ increases to unity when it approaches the top or
antitop direction. The result for the double differential cross-section in the peak region at
all orders in αs and to leading order in the power expansion in mtαs/Q, m2

t /Q2, Γt/mt and
Mt,t̄ − mt is given by [8]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(

mJ ,
Q

mJ
, µm, µ

)

[

ŝt,t̄ =
M2

t − m2
J

mJ

]

×
∫

dℓ+dℓ−B+

(

ŝt −
Qℓ+

mJ
,Γt, µ

)

B−

(

ŝt̄ −
Qℓ−

mJ
,Γt, µ

)

S(ℓ+, ℓ−, µ) . (3)

In Eq. (3) the normalization factor σ0 is the total Born-level cross-section, the HQ and Hm

are perturbative coefficients describing hard effects at the scales Q and mJ , B± are pertur-
bative jet functions that describe the evolution and decay of the the top and antitop close
to the mass shell, and S is a nonperturbative soft function describing the soft radiation be-
tween the jets. The result was derived using the hierarchy of scales (1), matching QCD onto
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arising from the initial state. Assuming a c.m. energy Q ≫ mt, mt being the top quark
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In Eq. (3) the normalization factor σ0 is the total Born-level cross-section, the HQ and Hm

are perturbative coefficients describing hard effects at the scales Q and mJ , B± are pertur-
bative jet functions that describe the evolution and decay of the the top and antitop close
to the mass shell, and S is a nonperturbative soft function describing the soft radiation be-
tween the jets. The result was derived using the hierarchy of scales (1), matching QCD onto
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that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the

variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ ≪ m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
t,t̄−m2 ∼ m2, we have an ultra-tail region where the cross-section is very small.

We do not consider the region where M2
t,t̄ ∼ Qm. The observable in Eq. (1) in the peak and

tail regions is the main focus of our analysis. We also briefly consider the cross-section in

the ultra-tail region.

The result for the double differential cross-section in the peak region to all orders in αs

is given by [2]

dσ
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t dM2

t̄

= σ0 HQ(Q, µm)Hm
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Q
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, µm, µ

)

×
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ŝt −
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)
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Qℓ−
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,Γt, µ

)
S(ℓ+, ℓ−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3)
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FIG. 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane separating
the two hemispheres is perpendicular to the thrust axis and intersects the thrust axis at the
interaction point. The total invariant mass inside each hemisphere is measured. Our analysis

applies equally well to the lepton+jets and the dilepton channels (not shown).

to the top mass, so that M2
t − m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is convenient to introduce

the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ ≪ m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.

Here the top width Γ is setting a lower bound on the width of the invariant mass distribution

and the shifted variable ŝt,t̄ can also be larger than Γ as long as ŝt,t̄ ≪ m. However, for

simplicity we will often write ŝt,t̄ ∼ Γ as we did in Eq. (1).

There are three relevant disparate scales governing the dynamics of the system,

Q ≫ m ≫ Γ > ΛQCD . (2)

This kinematic situation is characterized by energy deposits contained predominantly in

two back-to-back regions of the detector with opening angles of order m/Q associated to

the energetic jets coming from the top quark decay and collinear radiation. Frequently in

this work we refer to the jets coming from the top and antitop quark collectively as top

and antitop jet, respectively, but we stress that we do not require the jets from the top

and antitop decay products to be unresolved as pictured in Fig. 1 (for example one can still

identify a W and do b-tagging). The region between the top jets is predominantly populated

by soft particles with energies of order of the hadronic scale.

The EFT setup used to describe the dynamics in this kinematic situation is illustrated in

Fig. 2 and represents a sequence of different EFT’s. The use of different EFT’s is mandatory

to separate the various relevant physical fluctuations. The high energy dynamics for the

top quarks at the scale Q ≫ m can be described by quark and gluon degrees of freedom

that are collinear to the top and antitop jet axes, and by soft degrees of freedom that
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Figure 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane
separating the two hemispheres is perpendicular to the thrust axis and intersects the thrust
axis at the interaction point. The total invariant mass inside each hemisphere is measured.
Our analysis applies equally well to the lepton+jets and the dilepton channels (not shown).

arising from the initial state. Assuming a c.m. energy Q ≫ mt, mt being the top quark
mass, one can employ the hierarchy of scales

Q ≫ mt ≫ Γt > ΛQCD (1)

to establish a factorization theorem for the doubly differential top-antitop invariant mass
distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ≪ m2 . (2)

The invariant masses M2
t = (

∑

i∈Xt
pµ

i )2, M2
t̄ = (

∑

i∈Xt̄

pµ
i )2 depend on a prescription Xt,t̄

which associates final state momenta pµ
i to top and antitop invariant masses, respectively.

For invariant masses in the resonance region the events are characterized by energy deposits
predominantly contained in two back-to-back regions with opening angles mt/Q associated
with the energetic jets or leptons from the top decay plus collinear radiation, and by addi-
tional soft radiation populating the regions between the jets, see Fig. 1. We assume that
the prescriptions Xt,t̄ assign all soft radiation to either M2

t or M2
t̄ where the probability

of radiation being assigned to Xt or Xt̄ increases to unity when it approaches the top or
antitop direction. The result for the double differential cross-section in the peak region at
all orders in αs and to leading order in the power expansion in mtαs/Q, m2

t /Q2, Γt/mt and
Mt,t̄ − mt is given by [8]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm
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, µm, µ

)

[

ŝt,t̄ =
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J

mJ

]

×
∫

dℓ+dℓ−B+

(

ŝt −
Qℓ+

mJ
,Γt, µ

)

B−

(

ŝt̄ −
Qℓ−

mJ
,Γt, µ

)

S(ℓ+, ℓ−, µ) . (3)

In Eq. (3) the normalization factor σ0 is the total Born-level cross-section, the HQ and Hm

are perturbative coefficients describing hard effects at the scales Q and mJ , B± are pertur-
bative jet functions that describe the evolution and decay of the the top and antitop close
to the mass shell, and S is a nonperturbative soft function describing the soft radiation be-
tween the jets. The result was derived using the hierarchy of scales (1), matching QCD onto
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A Symphony of Effective Field Theories
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

where, as indicated, power corrections are suppressed by αsm/Q, m2/Q2, Γt/m, or st,t̄/m2.

Here mJ is the short-distance top quark mass we wish to measure, and for convenience we

have defined

ŝt =
st

mJ
=

M2
t − m2

J

mJ
, ŝt̄ =

st̄

mJ
=

M2
t̄ − m2

J

mJ
, (4)

where ŝt,t̄ ∼ Γ are of natural size in the peak region. In Eq. (3) the normalization factor σ0

is the total Born-level cross-section, the HQ and Hm are perturbative coefficients describing

hard effects at the scales Q and mJ , B± are perturbative jet functions that describe the

evolution and decay of the the top and antitop close to the mass shell, and S is a nonpertur-

bative soft function describing the soft radiation between the jets. To sum large logs B± and

S will be evolved to distinct renormalization scales µ, as we discuss in section IIC below.

For the tail region Eq. (3) becomes

dσ

dM2
t dM2

t̄

= σ0 HQ Hm B+ ⊗ B− ⊗ Spart + O
(ΛQCDQ

st,t̄

)
+ O

(mαs(m)

Q
,
m2

Q2
,
Γt

m

)
, (5)

so the only changes are that the soft-function S = Spart(ℓ+, ℓ−, µ) becomes calculable, and

we have an additional O(ΛQCDQ/st,t̄) nonperturbative correction from the power expansion

of the soft-function which we will include in our analysis. The result in Eq. (3) was derived

by matching QCD onto the Soft Collinear Effective Theory(SCET) [3, 4, 5, 6, 7] which

in turn was matched onto Heavy Quark Effective Theory(HQET) [8, 9, 10, 11, 12, 13]

generalized for unstable particles [14, 15, 16, 17] as illustrated in Fig. 1. The decoupling of

perturbative and nonperturbative effects into the B± jet functions and the S soft function

was achieved through a factorization theorem in SCET and HQET, aspects of which are

similar to factorization for massless event shapes [18, 19, 20, 21]. The result in Eq. (3) is an

event shape distribution for massive particles, and can be used to determine common event

shapes such as thrust or jet-mass distributions. Note that a subset of our results can also
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For massless jets there has been a lot of work done on the program of resumming logs in

event shape variables [31, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44]. In this paper we

do not use the traditional approach to resummation, but rather an approach that sums the

same large logs based on the renormalization of operators in effective field theories, including

HQET and SCET [3, 7]. The effective theory resummation technique has the advantage of

being free of Landau-pole singularities [45, 46], since it only depends on the evaluation of

anomalous dimensions at perturbative scales. This technique can also be extended in a

straightforward manner to arbitrary orders, NkLL in the resummation [47, 48]. A recent

application of the SCET technique is the resummation for thrust in e+e− to massless jets

at NLL order [49].

In our log-summation there is an important distinction between large logs which affect the

overall cross section normalization, and large logs that change the shape of the distribution

in M2
t,t̄. In predicting the normalization in the dijet region we must sum up a series of

double Sudakov logarithms that occur for Q ≫ m and for m ≫ Γ. However, it turns out

that the same is not true for logs affecting the shape of the invariant mass spectrum. As we

discuss in detail, the form of the spectrum is protected from large logs below the scale Q

until we reach the fundamental low energy scale governing the dynamics of either the soft or

jet functions. This conclusion is not affected by the mass threshold at m, and is valid to all

orders in perturbation theory (ie. for both leading and subleading series of logarithms). In

order for this cancellation to occur it is important that the invariant mass definition includes

soft radiation at wide angles. The hemisphere mass definition of Mt and Mt̄, as well as other

definitions which associate wide angle soft radiation to both Xt and Xt̄, are in this category.

In the effective field theory this protection against the appearance of shape changing large

logs is described by a set of “consistency conditions”. From our analysis we find that the

only shape changing large logs occur between the low energy scale µ ∼ QΛ/m + Γt where

logs in the jet functions are minimized, and a perturbative low energy scale µ >∼ Λ+mΓt/Q

where logs in the soft function are minimized. Here Λ ∼ 0.5 GeV is the hadronic scale

where the interactions are non-perturbative. As indicated there are two scales appearing in

each of these functions, and the question of which dominates depends on the size of these

parameters.

The program of this paper is as follows. In Sec. IIA we review the formulation of the

factorization theorem for the invariant mass cross-section from Ref. [2]. In Sec. II B we

show that the finite lifetime effects can be treated as a convolution of B± jet functions for

stable top quarks with a Breit-Wigner, and we describe models for S that are consistent

in the presence of perturbative corrections. In Sec IIC we discuss the structure of large

logarithms and present the factorization with log resummation. In section III we discuss the

connection between renormalization and the resummation of large logs in SCET and HQET,

derive the consistency conditions, and summarize results for the NLL renormalization group

evolution. Results for the matching, running, and matrix elements in SCET including the
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Figure 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane
separating the two hemispheres is perpendicular to the thrust axis and intersects the thrust
axis at the interaction point. The total invariant mass inside each hemisphere is measured.
Our analysis applies equally well to the lepton+jets and the dilepton channels (not shown).

arising from the initial state. Assuming a c.m. energy Q ≫ mt, mt being the top quark
mass, one can employ the hierarchy of scales

Q ≫ mt ≫ Γt > ΛQCD (1)

to establish a factorization theorem for the doubly differential top-antitop invariant mass
distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ≪ m2 . (2)

The invariant masses M2
t = (

∑

i∈Xt
pµ

i )2, M2
t̄ = (

∑

i∈Xt̄

pµ
i )2 depend on a prescription Xt,t̄

which associates final state momenta pµ
i to top and antitop invariant masses, respectively.

For invariant masses in the resonance region the events are characterized by energy deposits
predominantly contained in two back-to-back regions with opening angles mt/Q associated
with the energetic jets or leptons from the top decay plus collinear radiation, and by addi-
tional soft radiation populating the regions between the jets, see Fig. 1. We assume that
the prescriptions Xt,t̄ assign all soft radiation to either M2

t or M2
t̄ where the probability

of radiation being assigned to Xt or Xt̄ increases to unity when it approaches the top or
antitop direction. The result for the double differential cross-section in the peak region at
all orders in αs and to leading order in the power expansion in mtαs/Q, m2

t /Q2, Γt/mt and
Mt,t̄ − mt is given by [8]
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= σ0 HQ(Q, µm)Hm

(

mJ ,
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, µm, µ

)

[

ŝt,t̄ =
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t − m2
J

mJ

]

×
∫

dℓ+dℓ−B+

(

ŝt −
Qℓ+
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,Γt, µ

)

B−

(

ŝt̄ −
Qℓ−

mJ
,Γt, µ

)

S(ℓ+, ℓ−, µ) . (3)

In Eq. (3) the normalization factor σ0 is the total Born-level cross-section, the HQ and Hm

are perturbative coefficients describing hard effects at the scales Q and mJ , B± are pertur-
bative jet functions that describe the evolution and decay of the the top and antitop close
to the mass shell, and S is a nonperturbative soft function describing the soft radiation be-
tween the jets. The result was derived using the hierarchy of scales (1), matching QCD onto
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that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the

variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:

d2σ

dM2
t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ ≪ m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
t,t̄−m2 ∼ m2, we have an ultra-tail region where the cross-section is very small.

We do not consider the region where M2
t,t̄ ∼ Qm. The observable in Eq. (1) in the peak and

tail regions is the main focus of our analysis. We also briefly consider the cross-section in

the ultra-tail region.

The result for the double differential cross-section in the peak region to all orders in αs

is given by [2]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ

)

×
∫

dℓ+dℓ−B+

(
ŝt −

Qℓ+

mJ
,Γt, µ

)
B−

(
ŝt̄ −

Qℓ−

mJ
,Γt, µ

)
S(ℓ+, ℓ−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3)
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FIG. 1: Sequence of effective field theories used to compute the invariant mass distribution.

where, as indicated, power corrections are suppressed by αsm/Q, m2/Q2, Γt/m, or st,t̄/m2.

Here mJ is the short-distance top quark mass we wish to measure, and for convenience we

have defined

ŝt =
st

mJ
=

M2
t − m2

J

mJ
, ŝt̄ =

st̄

mJ
=

M2
t̄ − m2

J

mJ
, (4)

where ŝt,t̄ ∼ Γ are of natural size in the peak region. In Eq. (3) the normalization factor σ0

is the total Born-level cross-section, the HQ and Hm are perturbative coefficients describing

hard effects at the scales Q and mJ , B± are perturbative jet functions that describe the

evolution and decay of the the top and antitop close to the mass shell, and S is a nonpertur-

bative soft function describing the soft radiation between the jets. To sum large logs B± and

S will be evolved to distinct renormalization scales µ, as we discuss in section IIC below.

For the tail region Eq. (3) becomes

dσ

dM2
t dM2

t̄

= σ0 HQ Hm B+ ⊗ B− ⊗ Spart + O
(ΛQCDQ

st,t̄

)
+ O

(mαs(m)

Q
,
m2

Q2
,
Γt

m

)
, (5)

so the only changes are that the soft-function S = Spart(ℓ+, ℓ−, µ) becomes calculable, and

we have an additional O(ΛQCDQ/st,t̄) nonperturbative correction from the power expansion

of the soft-function which we will include in our analysis. The result in Eq. (3) was derived

by matching QCD onto the Soft Collinear Effective Theory(SCET) [3, 4, 5, 6, 7] which

in turn was matched onto Heavy Quark Effective Theory(HQET) [8, 9, 10, 11, 12, 13]

generalized for unstable particles [14, 15, 16, 17] as illustrated in Fig. 1. The decoupling of

perturbative and nonperturbative effects into the B± jet functions and the S soft function

was achieved through a factorization theorem in SCET and HQET, aspects of which are

similar to factorization for massless event shapes [18, 19, 20, 21]. The result in Eq. (3) is an

event shape distribution for massive particles, and can be used to determine common event

shapes such as thrust or jet-mass distributions. Note that a subset of our results can also

6
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that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the

variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:
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, M2
t,t̄ − m2 ∼ mΓ ≪ m2 , (1)

where

M2
t =

( ∑

i∈Xt

pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
t,t̄−m2 ∼ m2, we have an ultra-tail region where the cross-section is very small.

We do not consider the region where M2
t,t̄ ∼ Qm. The observable in Eq. (1) in the peak and

tail regions is the main focus of our analysis. We also briefly consider the cross-section in

the ultra-tail region.

The result for the double differential cross-section in the peak region to all orders in αs

is given by [2]

dσ

dM2
t dM2

t̄

= σ0 HQ(Q, µm)Hm

(
mJ ,

Q

mJ
, µm, µ

)

×
∫

dℓ+dℓ−B+

(
ŝt −

Qℓ+

mJ
,Γt, µ

)
B−

(
ŝt̄ −

Qℓ−

mJ
,Γt, µ

)
S(ℓ+, ℓ−, µ)

+ O
(mαs(m)

Q

)
+ O

(m2

Q2

)
+ O

(Γt

m

)
+ O

(st, st̄

m2

)
, (3)
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where the boosted HQET current is

Jµ
i (µ) = Cm(m, µ)Jµ

bHQET(µ) , (26)

with

Jµ
bHQET = (h̄v+Wn)Y †

nΓ
µ
i Yn̄(W

†
n̄hv−) . (27)

The soft Wilson lines Y in this current are the same as those used in the SCET soft function.

The only distinction is that soft gluons in bHQET no longer couple to massive top-bubbles.

Due to the large width of the top quarks the B± jet functions can be computed in

perturbation theory. At tree level they are Breit-Wigner distributions

Btree
± (ŝ,Γt) = Im

[
Btree
± (ŝ,Γt)

]
= Im

[
−1

πm

1

ŝ + iΓt

]
=

1

πm

Γt

ŝ2 + Γ2
t

, (28)

where we have adopted a normalization such that
∫ +∞

−∞

ds Btree
± (ŝ,Γt) = 1 . (29)

The Wilson coefficients in the factorization theorem in Eq. (3) are also normalized to unity

at tree level, HQ = 1 and Hm = 1.

B. Factorization of Lifetime Effects and Soft Function Models

The leading order bHQET Lagrangian is

L± = h̄v±

(
iv± · D± − δm +

i

2
Γt

)
hv± . (30)

In light-cone coordinates, (+,−,⊥), we have vµ
+ = (m/Q, Q/m, 0) and vµ

− = (Q/m, m/Q, 0)

and gluons/residual momenta scaling as Dµ
+ ∼ Γ(m/Q, Q/m, 1) and Dµ

− ∼ Γ(Q/m, m/Q, 1).

Unlike standard HQET, the ultracollinear gluon fields in bHQET are defined with zero-bin

subtractions [55] for the soft region. In Eq. (30) Γt is a Wilson coefficient obtained by

matching to the full theory and is equal to the top quark total width. This is true to leading

order in electroweak interactions, to O(m2/Q2) and O(Γ/m) in the power counting, and to

all orders in αs.3 Finally,

δm = mpole − m (31)

3 Concerning the m/Q expansion this is true because for Q ≫ m the hemisphere mass definition is inclusive

in the top and antitop decay products up to O(m2/Q2) corrections [2]. Concerning the Γ/m expansion

this is related to the fact that finite lifetime corrections are related to off-shell corrections that are ŝ/m-

suppressed [58]. Concerning the αs expansion this can be seen by carrying out the matching with free

quark states and noting that the full theory computation of t → bW gives the total rate. Now only the

operator of interest (iΓt/2)h̄vhv allows for decays in the effective theory, but it corresponds to a conserved

current and so does not get renormalized [8].
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matching to the full theory and is equal to the top quark total width. This is true to leading

order in electroweak interactions, to O(m2/Q2) and O(Γ/m) in the power counting, and to
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3 Concerning the m/Q expansion this is true because for Q ≫ m the hemisphere mass definition is inclusive

in the top and antitop decay products up to O(m2/Q2) corrections [2]. Concerning the Γ/m expansion

this is related to the fact that finite lifetime corrections are related to off-shell corrections that are ŝ/m-
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is the residual mass term that fixes the top quark mass definition m that is used in the

HQET computations. It needs to be consistent with the bHQET power counting [2],

δm ∼ ŝt ∼ ŝt̄ ∼ Γ , (32)

can be computed perturbatively, and is UV- and IR-finite. Note that the way in which

Eq. (30) will be used is to compute a jet-function where the width smears over a set of states

of invariant mass mΓt ≫ Λ2
QCD. Thus, for our analysis there are no ΛQCD/Γt corrections to

Eq. (30), just corrections of O(ΛQCD/m).

In Eq. (21) the jet functions B± are expressed in terms of the imaginary part of vacuum

matrix elements B± in Eq. (22). From L± it is straightforward to see that B± can be

obtained from the imaginary part of the vacuum matrix element BΓ=0
± for (fictitious) stable

top quarks by shifting the energy variable ŝ → ŝ + i Γt,

B±(ŝ, Γt, µ) = Im
[
B±(ŝ, Γt, µ)

]

= Im
[
BΓ=0
± (ŝ+i Γt, µ)

]
, (33)

Here we defined results for stable top quarks, namely the jet function BΓ=0
± (ŝ, µ) ≡

B±(ŝ, 0, µ), and a vacuum matrix element BΓ=0
± (ŝ, µ) ≡ B±(ŝ, 0, µ). They are related by

BΓ=0
± (ŝ, µ) = Im

[
BΓ=0
± (ŝ, µ)

]
, (34)

and we will refer to BΓ=0
± as the stable jet function in what follows. The result in Eq. (33)

is in complete analogy to the relation between the production rate of top quark pairs in the

nonrelativistic threshold region, Ec.m. ≈ 2m, where the leading order finite lifetime effects

can be implemented by the shift Ec.m. → Ec.m. + i Γt prior to taking the imaginary part of

the e+e− → e+e− forward scattering matrix element [16].

To separate the different physical effects in the cross section it is convenient to derive a

factorization theorem for the leading order finite lifetime effects to all orders in αs. To do

so we define the function

g(x) ≡ − i

2
BΓ=0
± (x, µ) = − i

2
B±(x, 0, µ) . (35)

It is analytic everywhere in the complex x-plane, except along the positive real axis, x ≥ 0,

where the vacuum matrix elements BΓ=0
± , defined using Eq. (22) with Γt = 0, has a cut

for intermediate states having invariant masses larger than the top quark mass. Using the

residue theorem for a contour that envelops the cut, it is then straightforward to derive the

dispersion relation

g(a) =
1

2πi

∫ ∞

0

dx
Disc[g(x)]

x − a
, (36)
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that are consistent for both the peak and tail regions, and carry out detailed calculations of

perturbative quantities in the factorization theorem. We verify that the matching conditions

which define the Wilson coefficients at the scales Q and m are infrared safe, compute one-

loop perturbative corrections to the matrix elements, and carry out the next-to-leading-log

renormalization group summation of large logs. For the peak region these are logs between

the scales Q, m, Γ, and ΛQCD, while away from the peak they are between Q2, m2, and the

variables M2
t − m2

t and M2
t̄ − m2

t described below.

As an observable sensitive to the top mass, we considered in Ref. [2] the double differential

invariant mass distribution in the peak region around the top resonance:
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t dM2

t̄

, M2
t,t̄ − m2 ∼ mΓ ≪ m2 , (1)

where

M2
t =

( ∑
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pµ
i

)2
, M2

t̄ =
( ∑

i∈Xt̄

pµ
i

)2
. (2)

Here Xt and Xt̄ represent a prescription to associate final state hadronic four momenta to

top and antitop invariant masses respectively. For simplicity we call Xt,t̄ the top and antitop

jets, and Mt,t̄ the invariant mass of the top and antitop jets respectively. The distribution

in Eq. (1) has a width Γ ∼ Γt + QΛQCD/m which can be larger than the top quark width

Γt. The restriction M2
t,t̄ −m2 ∼ mΓ ≪ m2 defines the peak region, which is the region most

sensitive to the top quark mass m. Here the dynamics is characterized by energy deposits

contained predominantly in two back-to-back regions of the detector with opening angles of

order m/Q associated with the energetic jets or leptons coming from the top and antitop

decays, plus collinear radiation. The region between the top decay jets is populated by soft

particles, whose momentum is assigned to one of M2
t or M2

t̄ . The tail region is defined by

invariant masses starting just past the peak where the cross-section begins to fall off rapidly,

namely where m2 ≫ M2
t,t̄ − m2 and either M2

t,t̄ − m2 >∼ mΓ or M2
t,t̄ − m2 ≫ mΓ. Farther

out, when M2
t,t̄−m2 ∼ m2, we have an ultra-tail region where the cross-section is very small.

We do not consider the region where M2
t,t̄ ∼ Qm. The observable in Eq. (1) in the peak and

tail regions is the main focus of our analysis. We also briefly consider the cross-section in

the ultra-tail region.

The result for the double differential cross-section in the peak region to all orders in αs

is given by [2]
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t̄

= σ0 HQ(Q, µm)Hm

(
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, µm, µ

)

×
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fixed, having in mind that it can be extracted from LEP data. In Fig. 15 we show F at NLL

for our default parameter set as a function of the two invariant mass variables Mt and Mt̄.

The underlying short-distance quark mass is mJ(µ = 2 GeV) = 172 GeV, and the peak of

the cross-section occurs for Mt and Mt̄ values which are ≃ 2.4 GeV larger. This peak shift

occurs due to the presence of the low energy radiation described by the soft function as dis-

cussed in Ref. [2]. At LO the shift is in the positive direction to Mpeak
t ≃ mJ +QS [1,0]

mod/(2mJ),

where here S [1,0] =
∫

dℓ+dℓ− ℓ+Smod(ℓ+, ℓ−) ∼ ΛQCD is the first moment of the underlying

soft-function model [2]. As described below, this linear behavior with Q/m persists at NLL

order, although the slope is no longer simply S [1,0]
mod. Above the peak one sees in Fig. 15 the

perturbative tails from gluon radiation, and that the tails are largest if we fix one of Mt or

Mt̄ at the peak.
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FIG. 2. Comparison of Pythia samples with 107 events and mMC

t = 173 GeV (red dots) to the theoretical prediction in the
MSR scheme at N2LL for mMSR

t (1 GeV) = 172.81GeV and ⌦
1

= 0.44GeV. The blue band shows the perturbative uncertainty
from a random scan over 500 profile functions. Vertical error bars on the Pythia points are obtained by a global rescaling of
Pythia statistical uncertainties such that the average �2

min

/dof = 1 and roughly indicate the incompatibility uncertainties on
the cross sections. Horizontal error bars are related to the N2LL incompatibility uncertainty in the MSR mass shown in Tab. I.

mMC

t = 173GeV

�
⌧e

+e�
2

�

mass order central perturb. incompatibility total

mMSR

t,1GeV

NLL 172.80 0.26 0.14 0.29

mMSR

t,1GeV

N2LL 172.82 0.19 0.11 0.22

mpole

t NLL 172.10 0.34 0.16 0.38

mpole

t N2LL 172.43 0.18 0.22 0.28

TABLE I. Results of the calibration for mMC

t = 173GeV in
Pythia, combining results from all Q sets and bin ranges.
Shown are central values, perturbative and incompatibility
uncertainties, and the total uncertainty, all in GeV.

ferences can be associated to the level of incompatibility
of the MC event generator results to the QCD predic-
tions, and unlike the perturbative uncertainties these dif-
ferences need not necessarily decrease when going from
NLL to N2LL. We will use the di↵erences from the 21
fits to assign an additional incompatibility uncertainty

between QCD and the MC generator for the calibration.

To quote final results we use the following procedure:
(1) Take the average of the highest and lowest central
values from the 21 sets as the final central value of our
calibration. (2) Take the average of the scale uncertain-
ties of these sets as our final estimate for the perturba-
tive uncertainty. (3) Take the half of the di↵erence of the
largest and smallest central values from the sets as the
incompatibility uncertainty between QCD and the MC.
(4) Quadratically add the perturbative, and incompati-
bility errors to obtain a final uncertainty.

Using ↵s values within the uncertainty of the world av-
erage ↵s(mZ) = 0.1181(13) gives an additional paramet-
ric uncertainty of ' 20 MeV for mMSR

t (1 GeV) and mpole

t

at N2LL order. This is an order of magnitude smaller
than the other uncertainties and we therefore neglect it.

Table I shows our final results for the MSR mass
mMSR

t (1 GeV) and mpole

t at NLL and N2LL order, uti-

lizing the mMC

t = 173GeV dataset. For mMSR

t (1 GeV)
we observe a reduction of perturbative uncertainties from
260 MeV at NLL to 190 MeV at N2LL. The correspond-
ing incompatibility uncertainties are 140 and 110 MeV.
The corresponding fit results for the first shape function
moment are ⌦PY

1

= 0.42 ± 0.07 ± 0.03 GeV at N2LL and
⌦PY

1

= 0.41 ± 0.07 ± 0.02 GeV at NLL order with the
first uncertainty coming from scale variation and second
from incompatibility. The result agrees nicely with the
expectation that ⌦

1

⇠ ⇤
QCD

. For mpole

t there is a signif-
icant di↵erence to mMC

t , and we observe that the central
value shifts by 330 MeV between NLL and N2LL order.
There is a reduction of perturbative uncertainties like
in the MSR scheme, however the incompatibility uncer-
tainty increases at N2LL order. These results may not
be unexpected, since the pole mass often leads to poor
convergence of perturbative series.

Figure 3, shows the outcome of our fits for the MSR
mass mMSR

t (1 GeV) at N2LL order with six di↵erent in-
put values for mMC

t , and error bars with the total un-
certainties. We see the expected strong correlation be-
tween these masses. This calibration results in Tab. I
and Fig. 3 should be independently determined for each
MC and generator setting (such as di↵erent tunes).

To the extent that the treatment of the top in MC
generators and QCD factorizes for di↵erent kinemati-
cally sensitive observables and from whether one consid-
ers e+e� or pp collisions, our method can be used to cal-
ibrate mMC

t in current experimental reconstruction anal-
yses. pp collisions introduce initial state radiation, color
reconnection, and additional hadronization and multi-
parton interaction e↵ects, not present in e+e�. In the
future our method can be extended to use a pp observ-
able to directly study these e↵ects. Prior to this, we
believe that applying our e+e� calibration to mMC

t from
a typical pp reconstruction analysis will give a more ac-
curate result than assuming mMC

t = mpole

t . When corre-

3

ues. For a given profile and value of ↵s(mZ) we fit the
parameters mt and ⌦i of the hadron level QCD predic-
tions to this MC dataset. We fit for integrals over bins in
⌧
2

of size ' 0.13 GeV/Q. For each Q value the distribu-
tion is normalized over the fit range, and multiple Qs are
needed simultaneously to break degeneracies. This pro-
cedure is carried out for the MC output and the QCD
predictions. We then construct the �2 using the statis-
tical uncertainties in the MC datasets. We do the fit by
first, for a given value of mt, minimizing �2 with respect
to the ⌦i parameters. The resulting marginalized �2 is
then minimized with respect to mt used in the QCD pre-
dictions. Uncertainties obtained for the QCD parameters
from this �2 simply reflect the MC statistical uncertain-
ties used to construct the �2. When fitting for mpole

t or
mMSR

t (1 GeV) we find that the resulting �2 is no longer
sensitive to ↵s(mZ). Therefore we fix ↵s(mZ) to the
world average, and do not consider it as a fit parameter.

To estimate the perturbative uncertainty in the QCD
predictions we take 500 random points in the profile-
function parameter space and perform a fit for each of
them. The 500 sets of best-fit values provide an ensem-
ble from which we remove the upper and lower 1.5% in
the mass values to eliminate potential numerical outliers.
From the ensemble we determine central values from the
average of the largest and smallest values and perturba-
tive uncertainties from half the covered interval.

To illustrate the calibration procedure we use
Pythia 8.205 [33, 34] with the e+e� default tune 7
(the Monash 2013 tune [35] for which ⇤c = 0.5 GeV)
for top mass parameter values mMC

t = 170, 171, 172,
173, 174 and 175 GeV. We use a fixed top quark width
�t = 1.4 GeV which is independent of mMC

t . (Final
calibration results for a mMC

t -dependent top width dif-
fer by less than 25 MeV). No other changes are made
to the default settings. To minimize statistical uncer-
tainties we generate each distribution with 107 events.
We have carried out fits for the following seven Q sets
(in GeV units): (600, 1000, 1400), (700, 1000, 1400),
(800, 1000, 1400), (600 – 900), (600 – 1400), (700 – 1000)
and (700 – 1400), where the ranges refer to steps of 100.
For each one of these sets we have considered three ranges
of ⌧

2

in the peak region: (60%, 80%), (70%, 80%) and
(80%, 80%), where (x%, y%) means that we include re-
gions of the spectra whose ⌧

2

< ⌧peak

2

having cross-section

values larger than x% of the peak height, and ⌧
2

> ⌧peak

2

with cross sections larger than y% of the peak height,
where ⌧peak

2

is the peak position. This makes a total of
21 fit settings each of which give central values and scale
uncertainties for the top mass and the ⌦i.

Numerical Results of the Calibration: To visu-
alize the stability of our fits we display in Fig. 1 the
distribution of best-fit mass values obtained for 500 ran-
dom profile functions for mMC

t = 173 GeV based on the
Q set (600 � 1400) and the bin range (60%, 80%). Re-
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FIG. 1. Distribution of best-fit mass values from the scan
over parameters describing perturbative uncertainties. Re-
sults are shown for cross sections employing the MSR mass
mMSR

t (1GeV) (top two panels) and the pole mass mpole

t

(bottom two panels), both at N2LL and NLL. The Pythia
datasets use mMC

t = 173GeV as an input (vertical red lines).

sults are shown for mMSR

t (1 GeV) and mpole

t at NLL
and N2LL order, exhibiting good convergence, with the
higher order result having a smaller perturbative scale
uncertainty. The results for mMSR

t (1 GeV) are stable and
about 200MeV below mMC

t confirming the close relation
of mMSR

t (1 GeV) and mMC

t suggested in Ref. [4, 5]. We
observe that mpole

t is about 1.1 GeV (NLL) and 0.7 GeV
(N2LL) lower than mMC

t , demonstrating that corrections
here are bigger, and that the MC mass can not sim-

ply be identified with the pole mass. These fit results
are compatible with converting mMSR

t with R ' µB '
µSQ/mt ' 10 GeV to mpole

t using Eq. (4), where µB is
the renormalization scale of the jet function JB,⌧2 which
governs the dominant mass sensitivity. In Fig. 2 we see
the level of agreement between the MC and theory re-
sults in the MSR scheme at N2LL order for this fit. The
bands show the N2LL perturbative uncertainty from the
profile variations.

The results from the fits to the 21 di↵erent Q sets and
bin ranges mentioned above are quite similar. The dif-
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• Monte Carlo top mass is found to be closer to the 
MSR mass than the pole mass.



Theory Issues at Hadron Collider

•  Jet observable

•  Clear relation to top mass scheme

•  Initial state radiation

•  Final state radiation

•  Beam remnant

•  Parton distribution functions

•  Color reconnection

•  Underlying events, pile up

•  Summing large logs

Direct Reconstruction Methods (Tevatron and LHC)
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Can be extended to pp. •
pp� tt̄
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Issue is that contamination is significant:
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Beam Jet

Soft radiation

• Lepton collider methods can be extended to hadron colliders.

• Make use of the 2-Jettiness event shape. (Stewart, Tackmann, Waalewijin)

Factorization for Boosted Tops at Hadron Colliders
(Hoang, SM, Pathak, Stewart)
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ISR PDFs
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Significant contamination
Input mass in Pythia 
mt = 173.1 GeV

Effect of UE/MPI

It is not ideal to have such a large shift from the 
contamination that needs to be modeled.

• Jet mass spectrum is quite sensitive to 
contamination:

• Same soft model for 
hadronization can describe UE

(Stewart, Tackmann, Waalewijin) 2
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FIG. 1. For the jet mass spectrum in Pythia8, the change from partonic to hadronization+MPI is described by a simple shift
in the tail, and a simple convolution everywhere, for both quark jets (left panel) and gluon jets (right panel).

yJ and R but not pJ
T , and can be factorized as [27–29]

S(kS , kB , yJ , R) =

Z

dk Spert

 (kS � k, kB , yJ , R) (2)

⇥ F(k, yJ , R)
⇥

1 + O�

⇤
QCD

/kB

�⇤

,

where Spert

 contains the perturbative soft contributions.
F is a normalized nonperturbative shape function which
encodes the smearing e↵ect that the hadronization has on
the soft momentum kS . For kS ⇠ ⇤

QCD

, the full F(k)
is required and shifts the peak region of the jet mass
spectrum to higher jet masses.

In the perturbative tail of the jet mass spectrum, where
kS � ⇤

QCD

, S can be expanded,

S(kS , yJ , R) = Spert



�

kS � ⌦(R), yJ , R
�

+ O�

⇤2

QCD

/k3

S , ↵s⇤QCD

/k2

S

�

, (3)

where ⌦(R) =
R

dk k F(k) ⇠ ⇤
QCD

is a nonpertur-
bative parameter. In this region factorization predicts
a shift in the jet mass spectrum, which is described by
⌦(R). Below, we use the field-theoretic definition of ⌦

to quantify its R dependence and prove that it is indepen-
dent of yJ . The above treatment provides an excellent
description of hadronization in both B-meson decays and
e+e� event shapes [30, 31].

Factorization also underlies the Monte Carlo descrip-
tion of the primary collision, where H corresponds to the
hard matrix element, while I, J , and S are described
by parton showers, and F corresponds to the hadroniza-
tion models. The standard parton shower paradigm does
not completely capture interference e↵ects between wide-
angle soft emissions from di↵erent primary partons that
appear at O(↵s) in S. Monte Carlo programs include
MPI (source 3), which are not in Eq. (1). See Ref. [32]
for a recent discussion. For our numerical studies, we
consider both Pythia8 [33, 34] with the ATLAS underly-
ing event tune AU2-MSTW2008LO [16] and Herwig++
2.7 [35, 36] with its default underlying event tune UE-EE-
5-MRST [18]. Both give a reasonable description of the

CMS jet mass spectrum in Z+jet events [20]. We also
compare to the Pythia8 default tune 4C.

We consider exclusive Z/H+jet events at E
cm

= 7TeV
in both quark and gluon channels, with the leading jet
within a certain range of pJ

T and yJ , and we veto addi-
tional jets with pJ

T > 50 GeV. The jets are defined using
anti-kT [37, 38]. In Fig. 1, we show the jet mass spectrum
for quark and gluon jets with R = 1 after parton shower-
ing (black dotted line) and including both hadronization
and MPI (blue dashed line). Equation (3) predicts that
for m2

J � ⇤
QCD

pJ
T the nonperturbative corrections shift

the tail of the jet mass spectrum by

m2

J = (m2

J)pert + 2pJ
T ⌦(R) . (4)

We can regard the partonic result from Pythia8 as
the baseline purely perturbative result. Choosing ⌦ =
2.4 GeV for qg ! Zq and ⌦ = 2.7 GeV for qq̄ ! Zg
yields the green dot-dashed curves in Fig. 1. We see that
the e↵ect of both hadronization and MPI in the tail is
well captured by this shift. For hadronization, Eqs. (1,2)
predict a convolution with a nonperturbative function,

d�

dm2

J

=

Z

dk
d�partonic



dm2

J

(m2

J � 2pJ
T k) F(k) . (5)

With the above ⌦’s, this convolution gives the red solid
curves in Fig. 1, yielding excellent agreement with the
hadronization+MPI result over the full range of the jet
mass spectrum.1 Both hadronization and MPI populate
the jet region with a smooth background of soft parti-
cles, which can explain why the MPI e↵ect is reproduced
alongside the hadronization by a convolution of the form

1 Here, F(k) = (4k/⌦2

) e
�2k/⌦ ; the simplest ansatz that satis-

fies the required properties: normalization, vanishing at k = 0,
falling o↵ exponentially for k ! 1, and having a first moment
⌦. Fixing the value of ⌦ from the tail, we find similar lev-
els of agreement across all values of pJT , yJ , R, for all partonic
channels, and for di↵erent jet veto cuts (including no jet veto).



Soft Drop
(Larkoski, Marzani, Soyez, Thaler)

• Soft drop grooming reduces sensitivity for jet mass spectrum to 
soft contamination.
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Grooms soft radiation from the jet
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two grooming parameters

min(pTi, pTj)
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(cf.  Jesse Thaler’s recent colloquium)

Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014

Fri, Larkoski, Schwartz, Yan 2016
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Figure 2: Location of modes appearing in the soft drop factorization theorem in the plane

defined by energy fraction z and splitting angle ✓ of emissions in the jet. The solid diagonal

line separates the regions of phase space where emissions pass and fail soft drop. All emissions

along the dashed line that pass soft drop contribute at leading power to the measured value

of e(↵)2 .

For a jet to have e(↵)2 ⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)2 . (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)2 . The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)2 ⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p
and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1
2(p

+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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Figure 3: Illustration of the multi-stage matching procedure to derive the soft drop fac-

torization theorem. As discussed in the text, we first match QCD to SCET, then factorize

the jet function into collinear and collinear-soft modes. Canonical scales of all modes in the

factorization theorem are shown on the right, ordered in virtuality where we assume that

↵ > 1 and � � 0.

full QCD to get the hard function, then decouple the soft and collinear degrees of freedom

to pull the jet and soft functions apart [15–18]. Alternatively, one can use the method of

regions approach [54, 55], or the on-shell phase space approach [56–58]. Importantly, e(↵)2 is

insensitive to recoil e↵ects from soft emissions that displace the jet axis from the direction of

hard, collinear particles [20, 40], and so the jet and soft functions are completely decoupled.

Next we write down the hard-soft-jet factorization formula in the presence of soft drop

grooming, assuming the hierarchy e(↵)2 ⌧ zcut ⌧ 1. With this assumption, soft radiation

emitted at large angles must necessarily fail the soft drop criterion. Thus, all wide angle soft

radiation in the jets (in this case, the hemisphere jets) is groomed and cannot contribute to

the observable. All that remains of the global soft function is a zcut-dependent normalization

factor SG(zcut). This leads to

d2�

de(↵)2,L de(↵)2,R

= H(Q2) ⇥ SG(zcut) ⇥ Jze

⇣
zcut, e

(↵)
2,L

⌘
⇥ Jze

⇣
zcut, e

(↵)
2,R

⌘
. (3.8)

SG(zcut) gives the cross section for the radiation from a set of Wilson lines that

fails the soft drop criterion. An explicit calculation of SG for hemisphere jets at one-

loop is given in Appendix C. With the collinear and soft modes decoupled, we can lower the

virtuality of the collinear modes without further matching.

The jet function Jze still depends on multiple scales, so to resum all the large logarithms it

must be re-factorized. To see that it refactorizes, note first that in addition to being collinear,

radiation in the jet function that is sensitive to the scale set by zcut must also be soft, by

the assumption that zcut ⌧ 1. Equivalently, emissions with order-1 energy fractions are not

constrained by the scale zcut. We can thus factorize the jet function into two pieces depending
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Figure 1: Schematic of the modes in the factorization theorem for soft-drop groomed hemi-

spheres in e+e� ! dijets events. SG(zcut) denotes the soft wide-angle modes, SC(zcute
(↵)
2 )

denotes the collinear-soft modes, and J(e(↵)2 ) denotes the jet modes.

As we will explain in detail, there are several important consequences of this factorization

formula. Because the formula depends on the observables e(↵)2,L, e(↵)2,R only through collinear ob-

jects each of which has a single scale, there are no non-global logarithms. The elimination

of the purely soft contribution also makes the shape of soft-drop groomed jet shapes largely

independent of what else is going on in the event. For example, the shape of the left hemi-

sphere jet mass is independent of what is present in the right hemisphere. Additionally, the

scale associated with the collinear-soft mode is parametrically larger than the soft scale as-

sociated with ungroomed masses, so non-perturbative corrections such as hadronization are

correspondingly smaller.

This factorization theorem allows us to go beyond NLL accuracy to arbitrary accuracy.

In this paper, we show that next-to-next-to-leading logarithmic (NNLL) accuracy is readily

achievable. We focus on ↵ = 2 where the two-point energy correlation function is equal to the

squared jet mass (up to a trivial normalization). This lets us extract most of the necessary

two-loop anomalous dimensions from the existing literature. For � = 0, the global soft

function SG(zcut) is closely related to the soft function with an energy veto [28, 29] which is

known to two-loop order. There are additional clustering e↵ects from the soft drop algorithm,

but these are straightforward to calculate. Interestingly, we find that the clustering e↵ects in

the soft drop groomer are intimately related to similar e↵ects observed in jet veto calculations

[30–34]. For � = 1, we compute the two-loop anomalous dimension of SG(zcut) numerically
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For a jet to have e(↵)2 ⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)2 . (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)2 . The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)2 ⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p
and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1
2(p

+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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↵ > 1 and � � 0.

full QCD to get the hard function, then decouple the soft and collinear degrees of freedom

to pull the jet and soft functions apart [15–18]. Alternatively, one can use the method of

regions approach [54, 55], or the on-shell phase space approach [56–58]. Importantly, e(↵)2 is

insensitive to recoil e↵ects from soft emissions that displace the jet axis from the direction of

hard, collinear particles [20, 40], and so the jet and soft functions are completely decoupled.

Next we write down the hard-soft-jet factorization formula in the presence of soft drop

grooming, assuming the hierarchy e(↵)2 ⌧ zcut ⌧ 1. With this assumption, soft radiation

emitted at large angles must necessarily fail the soft drop criterion. Thus, all wide angle soft

radiation in the jets (in this case, the hemisphere jets) is groomed and cannot contribute to

the observable. All that remains of the global soft function is a zcut-dependent normalization

factor SG(zcut). This leads to

d2�

de(↵)2,L de(↵)2,R

= H(Q2) ⇥ SG(zcut) ⇥ Jze

⇣
zcut, e

(↵)
2,L

⌘
⇥ Jze

⇣
zcut, e

(↵)
2,R

⌘
. (3.8)

SG(zcut) gives the cross section for the radiation from a set of Wilson lines that

fails the soft drop criterion. An explicit calculation of SG for hemisphere jets at one-

loop is given in Appendix C. With the collinear and soft modes decoupled, we can lower the

virtuality of the collinear modes without further matching.

The jet function Jze still depends on multiple scales, so to resum all the large logarithms it

must be re-factorized. To see that it refactorizes, note first that in addition to being collinear,

radiation in the jet function that is sensitive to the scale set by zcut must also be soft, by

the assumption that zcut ⌧ 1. Equivalently, emissions with order-1 energy fractions are not

constrained by the scale zcut. We can thus factorize the jet function into two pieces depending
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As we will explain in detail, there are several important consequences of this factorization

formula. Because the formula depends on the observables e(↵)2,L, e(↵)2,R only through collinear ob-

jects each of which has a single scale, there are no non-global logarithms. The elimination

of the purely soft contribution also makes the shape of soft-drop groomed jet shapes largely

independent of what else is going on in the event. For example, the shape of the left hemi-

sphere jet mass is independent of what is present in the right hemisphere. Additionally, the

scale associated with the collinear-soft mode is parametrically larger than the soft scale as-

sociated with ungroomed masses, so non-perturbative corrections such as hadronization are

correspondingly smaller.

This factorization theorem allows us to go beyond NLL accuracy to arbitrary accuracy.

In this paper, we show that next-to-next-to-leading logarithmic (NNLL) accuracy is readily

achievable. We focus on ↵ = 2 where the two-point energy correlation function is equal to the

squared jet mass (up to a trivial normalization). This lets us extract most of the necessary

two-loop anomalous dimensions from the existing literature. For � = 0, the global soft

function SG(zcut) is closely related to the soft function with an energy veto [28, 29] which is

known to two-loop order. There are additional clustering e↵ects from the soft drop algorithm,

but these are straightforward to calculate. Interestingly, we find that the clustering e↵ects in

the soft drop groomer are intimately related to similar e↵ects observed in jet veto calculations

[30–34]. For � = 1, we compute the two-loop anomalous dimension of SG(zcut) numerically
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line separates the regions of phase space where emissions pass and fail soft drop. All emissions

along the dashed line that pass soft drop contribute at leading power to the measured value

of e(↵)2 .

For a jet to have e(↵)2 ⌧ 1, all particles must be either soft or collinear to the jet axis. In

particular, a particle with energy E = zEJ at an angle ✓ from the jet axis must satisfy

z✓↵ . e(↵)2 . (3.1)

This is a line in the log(1/z)-log(1/✓) plane, as shown in Fig. 2. Anything below the dashed

line in this figure is too hard to be consistent with a given value of e(↵)2 . The soft drop criterion

is that

zcut . z✓�� , (3.2)

This is the region below the solid line in Fig. 2.

To find the relevant modes for the factorized expression, we need to identify the distinct

characteristic momentum scalings that approach the singular regions of phase space in the

limit e(↵)2 ⌧ zcut ⌧ 1. For a particular scaling, the constraints in Eqs. (3.1) and (3.2) will

either remain relevant or decouple. We can characterize the relevant regions by their scalings

in light-cone coordinates. Defining nµ as the jet direction and n̄µ as the direction backwards

to the jet, then light-cone coordinates are triplets p = (p�, p+, p?) where p� = n̄ ·p, p+ = n ·p
and p? are the components transverse to n. On-shell massless particles have p+p� = p2?.

The energy fraction is z = p0/Q = 1
2(p

+ +p�)/Q and the angle to the jet axis in the collinear

limit is ✓ = p?/p0.
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In this paper, we open the door to systematically improvable jet substructure calculations

by presenting an all-orders factorization theorem for the soft-drop [8] groomed observables

using soft-collinear e↵ective theory (SCET) [15–18]. An overview of the method we discuss

here and some of our results were presented recently in Ref. [19]. This paper provides a more

detailed presentation of those results as well as a derivation of the factorization formula and

its remarkable properties.

The soft drop groomer walks through the branching history of a jet, discarding soft

branches until a su�ciently hard branching is found. This is enforced by e↵ectively requiring

min[Ei, Ej ]

Ei + Ej
> zcut

✓
✓ij
R

◆�

, (1.1)

where Ei and Ej are the energies of the particles in that step of the branching, ✓ij is their

relative angle, and R is the radius of the jet. zcut is a parameter that sets the scale of soft,

wide angle emissions in the jet; the typical value is zcut = 0.1. � is a parameter that controls

the aggressiveness of the groomer: � = 1 removes the groomer, � = 0 coincides with mMDT

and is simply an energy cut, and � < 0 removes all soft and collinear singularities. We will

consider � � 0. If Eq. (1.1) is not satisfied, the softer of the two branches is removed from the

jet, and the grooming procedure continues on the harder branch. When Eq. (1.1) is satisfied,

the procedure terminates and the groomed jet is returned. For concreteness, on this groomed

jet, we measure the two-point energy correlation functions e(↵)2 with angular exponent ↵ > 0

[20–22].

In e+e� ! dijets events, the factorization formula we derive in this paper for soft-drop

groomed left and right hemisphere jets is:

d2�

de(↵)2,L de(↵)2,R

= H(Q2)SG(zcut)
h
SC(zcute

(↵)
2,L) ⌦ J(e(↵)2,L)

i h
SC(zcute

(↵)
2,R) ⌦ J(e(↵)2,R)

i
. (1.2)

This factorization theorem applies when zcut ⌧ 1 and the left- and right-hemisphere energy

correlation functions are asymptotically small: e(↵)2,L, e(↵)2,R ⌧ zcut ⌧ 1. We illustrate the

physical configuration corresponding to this factorization theorem in Fig. 1. In Eq. (1.2),

H(Q2) is the hard function for e+e� ! qq̄. SG(zcut) is the global soft function, which is

only sensitive to the scale set by zcut since all of its emissions fail soft drop. SC(zcute
(↵)
2,L)

is a soft function that is boosted along the direction of the jet in the left hemisphere; its

corresponding modes are referred to as collinear-soft [23–28]. Emissions in SC(zcute
(↵)
2,L) may

or may not pass the soft drop requirement and are therefore constrained by both zcut and

e(↵)2,L. Importantly, this collinear-soft mode depends on only a single scale which we generically

denote by zcute
(↵)
2,L. (For ↵ 6= 2 or � > 0, the single scale is a di↵erent combination of zcut

and e(↵)2,L; we simply call it zcute
(↵)
2,L for notational brevity.) J(e(↵)2,L) is the jet function for the

left hemisphere jet, and all emissions in the jet function parametrically pass the soft drop

requirement. Thus, the jet function is independent of the scale set by zcut, and only depends

on e(↵)2,L. ⌦ denotes convolution in e(↵)2,L, and a similar collinear-soft and jet factorization exists

for the right hemisphere.
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•  Factorization

•  Wide angle soft radiation groomed away

•  No non-global logs



Top Jet Mass with Soft Drop



3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2

(1 + cos ✓)

�
⇠ 2m�t

Q2

. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
cut

✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

z
cut

> z ⇠ 2m�t

Q2

, (3.7)

whereas, to keep the ultra-collinear modes with ✓
uc

⇠ 2m/Q we require

z
cut

✓
2m

Q

◆�

< z ⇠ �t

m
) �t

m

✓
Q

2m

◆�

> z
cut

. (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products

kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

z
cut

�
usoft

vetoed

2m�t

Q2

. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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min(pTi, pTj)
pTi + pTj

> zcut

��Rij

R0

��

(cf.  Jesse Thaler’s recent colloquium)

Can still carry out calculations: Larkoski, Marzani, Soyez, Thaler 2014

Fri, Larkoski, Schwartz, Yan 2016500 1000 1500 200010-5

10-4

10-3

10-2

0.1

1

pT [GeV]

z c
ut

ultracollinear vetoed

allowed region β = 2

ultrasoft not vetoed

1

P(x|Q) =

1

�tot
({Q})

Z

dx1 dx2 d�(y)
f(x1) f(x2)

x1 x2 s
�({Q},y)W (x,y)

�t

m

⇣ Q

2m

⌘�

� zcut � 2m�t

Q2
(1)

L(x|Q) = f(N)⇧i=1,NP(xi|Q)

�2
= ⌃i=l, 4jets

(p̂iT � piT )
2

�2
i

+ ⌃j=x,y

(p̂UE
j � pUE

j )

2

�2
j

+

(mjj �mW )

2

�

2
W

+

(ml⌫ �mW )

2

�

2
W

+

(mbjj �mreco
t )

2

�

2
t

+

(mbl⌫ �mreco
t )

2

�

2
t

Lsample = Lmreco

t

shape ⇥ Lm
jj

shape ⇥ Lne⌫ ⇥ Lbg

R ⇠
X

n

rn ↵
n

rn ! Kann!nb

N? ⇠ 1

|a|↵

T = max
n

P

i|pi.n|
P

i|pi|

R(⌧) =

Z ⌧

0

d⌧ 0
1

�0

d�

d⌧ 0
= 1 +

2↵s

3⇡
[�2 ln

2 ⌧ � 3 ln ⌧ + . . .]

1

�0

d�dijet

d⌧
= H(Q2, µ)

Z

dp2J
a

dp2J
b

dk J(p2J
a

, µ)J(p2J
b

, µ)ST (k, µ)�
⇣

⌧ � p2J
a

+ p2J
b

Q2
� k

Q

⌘

HQ(Q, µ) = |CQ|2 , Hm

⇣

m,
Q

m
, µ

⌘

= |Cm|2

Top Jet Mass with Soft Drop
A. Hoang, S. Mantry, AP, I. Stewart

a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination

3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2

(1 + cos ✓)
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⇠ 2m�t

Q2

. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
cut

✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

z
cut
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, (3.7)

whereas, to keep the ultra-collinear modes with ✓
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⇠ 2m/Q we require
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. (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:

✓
Q
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products

kept
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m
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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Soft Drop parameters:
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Ensure soft drop
does not touch mass
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removes most contamination

3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+
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where � � �t is the physical width of the distribution in the peak region. Here k is the four
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Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:
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✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies
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, but with

much higher energy z
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⇠ 1. Hence, this condition is strong enough to ensure that the top
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2

(1 + cos ✓)

�
⇠ 2m�t

Q2

. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
cut

✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

z
cut

> z ⇠ 2m�t

Q2

, (3.7)

whereas, to keep the ultra-collinear modes with ✓
uc

⇠ 2m/Q we require

z
cut

✓
2m

Q

◆�

< z ⇠ �t

m
) �t

m

✓
Q

2m

◆�

> z
cut

. (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:

✓
Q

2m
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�
decay

products

kept

�t

m
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Q

2m
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ucollinear

kept

z
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2m�t

Q2

. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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a) Peak Region Constraint: b) Soft Drop Constraint:

Constraints on 
Soft Drop parameters:

“light grooming here”

Ensure soft drop
does not touch mass

Ensure soft drop
removes most contamination

Top Jet Mass Constraints with Soft Drop

• Top jet mass constraint in the peak region:

thrust
 axis

soft particles

n-collinear n-collinear

hemisphere-a hemisphere-b

FIG. 1: Six jet event initiated by a top quark pair, tt̄ → bW b̄W → bqq′b̄qq′. The plane separating
the two hemispheres is perpendicular to the thrust axis and intersects the thrust axis at the
interaction point. The total invariant mass inside each hemisphere is measured. Our analysis

applies equally well to the lepton+jets and the dilepton channels (not shown).

to the top mass, so that M2
t − m2 ∼ mΓ and M2

t̄ −m2 ∼ mΓ. It is convenient to introduce

the shifted variables

ŝt,t̄ ≡
st,t̄

m
≡

M2
t,t̄ − m2

m
∼ Γ ≪ m , (1)

because it is only the invariant mass distribution close to the peak that we wish to predict.

Here the top width Γ is setting a lower bound on the width of the invariant mass distribution

and the shifted variable ŝt,t̄ can also be larger than Γ as long as ŝt,t̄ ≪ m. However, for

simplicity we will often write ŝt,t̄ ∼ Γ as we did in Eq. (1).

There are three relevant disparate scales governing the dynamics of the system,

Q ≫ m ≫ Γ > ΛQCD . (2)

This kinematic situation is characterized by energy deposits contained predominantly in

two back-to-back regions of the detector with opening angles of order m/Q associated to

the energetic jets coming from the top quark decay and collinear radiation. Frequently in

this work we refer to the jets coming from the top and antitop quark collectively as top

and antitop jet, respectively, but we stress that we do not require the jets from the top

and antitop decay products to be unresolved as pictured in Fig. 1 (for example one can still

identify a W and do b-tagging). The region between the top jets is predominantly populated

by soft particles with energies of order of the hadronic scale.

The EFT setup used to describe the dynamics in this kinematic situation is illustrated in

Fig. 2 and represents a sequence of different EFT’s. The use of different EFT’s is mandatory

to separate the various relevant physical fluctuations. The high energy dynamics for the

top quarks at the scale Q ≫ m can be described by quark and gluon degrees of freedom

that are collinear to the top and antitop jet axes, and by soft degrees of freedom that
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Figure 5: Phase space for emissions relevant for groomed jet radius Rg in the (log 1
z , log R0

✓ )

plane. The soft dropped region is gray and the first emission satisfying the soft drop criteria

is illustrated by the red dot. The forbidden emission region (the Sudakov exponent) is shaded

in pink.

the jet radius is set, so multiple emissions do not contribute to this observable. We have also

verified that non-global contributions are suppressed by Rg for � < 1, analogously to the

energy correlation case. For these reasons, we believe that the expression in Eq. (4.1) is fully

accurate to single-logarithmic level,8 though for consistency with the rest of this paper, we

will only evaluate Eq. (4.1) to MLL accuracy.

4.2 Comparison to Monte Carlo

There are two di↵erent ways one can define the groomed jet radius in Monte Carlo. The first

method is to simply measure the Rg value of the C/A branching that satisfies the soft drop

condition. A second approach, more directly relevant for pileup mitigation, is to determine

the e↵ective radius of the groomed jet from its active area [108]. The active area of a jet

is defined as the area over which infinitesimally soft particles are clustered into the jet. An

e↵ective jet radius Re↵ can then be defined from the groomed jet active area using:

Re↵ ⌘
✓

Aactive

⇡⇠

◆1/2

, (4.2)

8Strictly speaking, NLL accuracy requires evaluating the strong coupling at two loops, i.e. with �1, in the

CMW scheme [126].
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Lower 
pT

from decay products



3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2

(1 + cos ✓)

�
⇠ 2m�t

Q2

. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
cut

✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

z
cut

> z ⇠ 2m�t

Q2

, (3.7)

whereas, to keep the ultra-collinear modes with ✓
uc

⇠ 2m/Q we require

z
cut

✓
2m

Q

◆�

< z ⇠ �t

m
) �t

m

✓
Q

2m

◆�

> z
cut

. (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products

kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

z
cut

�
usoft

vetoed

2m�t

Q2

. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
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k+, k�, k?
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=
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E(1� cos ✓), E(1 + cos ✓), k?
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. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes
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(1� cos ✓) +
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. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
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✓� . (3.6)
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The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
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, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
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be parametrically separated from the
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2

(1 + cos ✓)

�
⇠ 2m�t

Q2

. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
cut

✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

z
cut

> z ⇠ 2m�t

Q2

, (3.7)

whereas, to keep the ultra-collinear modes with ✓
uc

⇠ 2m/Q we require

z
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m
) �t
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The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:
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. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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Figure 5: Phase space for emissions relevant for groomed jet radius Rg in the (log 1
z , log R0

✓ )

plane. The soft dropped region is gray and the first emission satisfying the soft drop criteria

is illustrated by the red dot. The forbidden emission region (the Sudakov exponent) is shaded

in pink.

the jet radius is set, so multiple emissions do not contribute to this observable. We have also

verified that non-global contributions are suppressed by Rg for � < 1, analogously to the

energy correlation case. For these reasons, we believe that the expression in Eq. (4.1) is fully

accurate to single-logarithmic level,8 though for consistency with the rest of this paper, we

will only evaluate Eq. (4.1) to MLL accuracy.

4.2 Comparison to Monte Carlo

There are two di↵erent ways one can define the groomed jet radius in Monte Carlo. The first

method is to simply measure the Rg value of the C/A branching that satisfies the soft drop

condition. A second approach, more directly relevant for pileup mitigation, is to determine

the e↵ective radius of the groomed jet from its active area [108]. The active area of a jet

is defined as the area over which infinitesimally soft particles are clustered into the jet. An

e↵ective jet radius Re↵ can then be defined from the groomed jet active area using:

Re↵ ⌘
✓

Aactive

⇡⇠

◆1/2

, (4.2)

8Strictly speaking, NLL accuracy requires evaluating the strong coupling at two loops, i.e. with �1, in the

CMW scheme [126].
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3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
�
k+, k�, k?

�
=

�
E(1� cos ✓), E(1 + cos ✓), k?

�
. (3.4)

For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes

z


(1� cos ✓) +

m2

Q2

(1 + cos ✓)

�
⇠ 2m�t

Q2

. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
cut

✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies

z
cut

> z ⇠ 2m�t

Q2

, (3.7)

whereas, to keep the ultra-collinear modes with ✓
uc

⇠ 2m/Q we require

z
cut

✓
2m

Q

◆�

< z ⇠ �t

m
) �t

m

✓
Q

2m

◆�

> z
cut

. (3.8)

The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:

✓
Q

2m

◆�

�
decay

products

kept

�t

m

✓
Q

2m

◆�

�
ucollinear

kept

z
cut

�
usoft

vetoed

2m�t

Q2

. (3.9)

However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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3.1 Modes and Power Counting Analysis

Following along the lines of derivation in Ref. [5] we consider an emission (or a decay product)

of energy E and at an angle ✓ o↵ the top quark and note that for this emission to contribute

to the invariant mass measurement in the peak region it needs to satisfy

ŝ = 2 v
+

.k ⇠ � , (3.3)

where � � �t is the physical width of the distribution in the peak region. Here k is the four

momentum and z is the energy fraction relative to the jet energy:

kµj =
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k+, k�, k?

�
=
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E(1� cos ✓), E(1 + cos ✓), k?

�
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For center of mass energy Q we have z = 2E/Q = k�/Q, and ✓ ⇠ 2k?/k�. Hence the peak

region constraint becomes
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. (3.5)

Eq. (3.3) states that the scale of fluctuations of momenta in bHQET theory is O(�t). Both

ultra-collinear or ultra-soft modes in bHQET satisfy this constraint.

Now, application of soft drop puts another constraint:

z & z
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✓� . (3.6)

Requiring grooming of ultra-soft modes with ✓ ⇠ 1 implies
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, (3.7)
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The decay products have same boost as the ultra-collinear particles, or ✓
decay

⇠ ✓
uc

, but with

much higher energy z
decay

⇠ 1. Hence, this condition is strong enough to ensure that the top

decays products are kept. Hence, we demand that z
cut

be parametrically separated from the

scales derived above:
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However, the fact that angle of the decay products relative to the jet axis is the same as

that of ultra-collinear modes has an important consequence: For z
cut

in the range given by

Eq. (3.9) the soft drop criteria in Eq. (3.2) is satisfied when the algorithm reaches the branch

that corresponds to one of the three pairs of sub-jets of the decay products after having vetoed

away the ultra soft particles at larger angles. Thus Rg e↵ectively corresponds to �R ⇠ ✓
decay

between the decay products.
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Figure 5: Phase space for emissions relevant for groomed jet radius Rg in the (log 1
z , log R0

✓ )

plane. The soft dropped region is gray and the first emission satisfying the soft drop criteria

is illustrated by the red dot. The forbidden emission region (the Sudakov exponent) is shaded

in pink.

the jet radius is set, so multiple emissions do not contribute to this observable. We have also

verified that non-global contributions are suppressed by Rg for � < 1, analogously to the

energy correlation case. For these reasons, we believe that the expression in Eq. (4.1) is fully

accurate to single-logarithmic level,8 though for consistency with the rest of this paper, we

will only evaluate Eq. (4.1) to MLL accuracy.

4.2 Comparison to Monte Carlo

There are two di↵erent ways one can define the groomed jet radius in Monte Carlo. The first

method is to simply measure the Rg value of the C/A branching that satisfies the soft drop

condition. A second approach, more directly relevant for pileup mitigation, is to determine

the e↵ective radius of the groomed jet from its active area [108]. The active area of a jet

is defined as the area over which infinitesimally soft particles are clustered into the jet. An

e↵ective jet radius Re↵ can then be defined from the groomed jet active area using:

Re↵ ⌘
✓

Aactive

⇡⇠

◆1/2

, (4.2)

8Strictly speaking, NLL accuracy requires evaluating the strong coupling at two loops, i.e. with �1, in the

CMW scheme [126].
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Lower 
pT

from decay products

• Ultra-Soft modes trivially fail soft drop and don’t contribute to jet mass.

• A “collinear-soft” mode arises at the boundary that “saturates” soft drop 
and jet mass constraints.

• “Global-soft” modes at large angles with energy comparable to              are 
also sensitive to the soft drop constraint.
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Figure 5: Phase space for emissions relevant for groomed jet radius Rg in the (log 1
z , log R0

✓ )

plane. The soft dropped region is gray and the first emission satisfying the soft drop criteria

is illustrated by the red dot. The forbidden emission region (the Sudakov exponent) is shaded

in pink.

the jet radius is set, so multiple emissions do not contribute to this observable. We have also

verified that non-global contributions are suppressed by Rg for � < 1, analogously to the

energy correlation case. For these reasons, we believe that the expression in Eq. (4.1) is fully

accurate to single-logarithmic level,8 though for consistency with the rest of this paper, we

will only evaluate Eq. (4.1) to MLL accuracy.

4.2 Comparison to Monte Carlo

There are two di↵erent ways one can define the groomed jet radius in Monte Carlo. The first

method is to simply measure the Rg value of the C/A branching that satisfies the soft drop

condition. A second approach, more directly relevant for pileup mitigation, is to determine

the e↵ective radius of the groomed jet from its active area [108]. The active area of a jet

is defined as the area over which infinitesimally soft particles are clustered into the jet. An

e↵ective jet radius Re↵ can then be defined from the groomed jet active area using:

Re↵ ⌘
✓

Aactive

⇡⇠

◆1/2

, (4.2)

8Strictly speaking, NLL accuracy requires evaluating the strong coupling at two loops, i.e. with �1, in the

CMW scheme [126].
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However, the comparison between soft and ultra-collinear modes depends on specific values

of ✏ and �. We can also check that the soft modes lie below the top mass hyperbola, or

Qz
cut

/m ⌧ m. From Eq. (3.9) we have

z
cut

⌧ �t

m

✓
Q

2m

◆�

<
2m

Q
, (3.18)

since �t/m < (2m/Q)1+� for su�ciently large Q and � = 0, 1, 2.

Next we turn towards non-perturbative modes present after grooming. Modes that are

collinear and non-perturbative satisfy p2
NP

⇠ ⇤2

QCD

and can be parametrized by their angle ✓

relative to the jet axis as

pµ
NP

⇠ 2⇤
QCD

Q

2m

✓
✓2

4
, 1,

✓

2

◆
, z

NP

(✓) ⇠ 2⇤
QCD

Q ✓
, (3.19)

and are represented by the brown line in Fig. 1. The region above brown line corresponds to

non-perturbative modes with yet smaller invariant mass.

We can extend the results in Eq. (3.12) to describe the tail region, as well as the non-

perturbative region, by making a substitution �t ! ŝ. Since the collinear-soft modes have the

lowest invariant mass of all the three modes considered above, we can ask for what values of

– 8 –
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Effective Theory for Groomed top jets
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Ensure soft drop 
does not touch mass     

Can only apply  a light  ~1%  soft drop for tops:

Ensure soft drop removes 
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Factorization Theorem for Soft Dropped Top Jets:

Now includes semi leptonic decays!

Factorization with Soft Drop
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Soft Drop prediction: Same Result for e+e� and pp
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Soft Drop prediction: Same Result for e+e� and pp
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Compare Simulations to Our Theory 
(preliminary)
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0.6 Scheme choice

How does the choice of scheme a↵ect
the accuracy of the measurement?

Certain schemes are better than others.

Bottom quark decay width example:

7
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Dominant change is expected:
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Add uncertainties from
scale variation: Translation of theory uncertainties to 

the fit parameters is in progress.
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[Hoang, Mantry, AP, Stewart]

0.21 Future directions

Conclusion and future directions

• Top-mass can be extracted with O(1 GeV) precision
in a specific mass scheme using event shapes.

• Ingredients for NNLL evaluation of 2-jettiness factor-
ization theorem are known, except for the Soft function.
N-jettiness soft function needs to be calculated for XCone

20

Pythia Simulation vs. Theory (with Soft Drop)

Testing sensitivity to
higher moments:



Summary

• Dominant uncertainty in top mass is identifying the 
renormalization scheme.

• Requires a QFT factorization framework, with clear top mass 
scheme information, to be compared to simulation or data.

• Discussed a new factorization framework for boosted top quarks. 

• Exploited soft drop grooming techniques to reduce sensitivity 
to contamination.


