Machine Learning
Jonathan Walsh

Beyond Physics

from a Physicist’s Perspective
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A core tenet of particle physics

We can
understand
the model



My own experience in physics (QCD-side)

I 5EC jet algorithms :
grad school : Jees : SCET for jets
Olympics jet substructure
phenomenological > theoretical
QCD ‘ foundations
et non—global high-precision S e fixed or.der 3\;/%
logarithms Monte Carlo calculations
increasingly >
technical

Evolution of my research program largely governed by the process:

finding interesting problems in QCD
understanding the underlying theory
applying it to more interesting problems
rinse and repeat
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Modeling beyond physics

Beyond physics, the model may be too complex or just unknown.
A first-principles approach does not apply in these cases.

We need tools capable of model inference that can
learn and utilize relevant information in the data

2 common approaches: statistical and deterministic modeling

- statistical : derive the form of the model
- deterministic : input the form of the model



Retframing the core tenet

Beyond physics, the model may be too complex or just unknown.
A first-principles approach does not apply in these cases.

We need tools capable of model inference that can
learn and utilize relevant information in the data

We can We can
understand > understand
the model the data




Statistical vs. Deterministic Modeling

performance

optimal

deterministic

statistical

g

parameter

deterministic models:

« high accuracy in a region
of phase space

e bad failure modes outside
domain of applicability

statistical models:

« reasonable accuracy
across phase space

o graceful failure modes

which should we prefer?



Minimax Optimization

optimize for the best performance of the worst case

In most applications, we care about performance in the worst case:

you want your bike/car/train/plane not to crash

you want to avoid serious illness

you buy insurance for costly rare events

you prioritize products working over their features

— User experience is most sensitive to performance in the worst cases

People tend to remember the worst parts of an experience
and base a valuation more heavily on that:

 the worst dishes at a meal

« reliability of a car

« annoyances in computer UX (e.g. Mac vs. Windows)
o everything about flying



A core tenet of machine learning

Learn expressive models



Understanding Datasets

supervised = discriminative
/‘7 learning model
. enerative
Data > samplin ——> 5
f S model
\ . .
unsupervised 2 inferred
learning structure

often, we want to transform the data into features as a first step



Feature Extraction

feature extraction: start with a linear model

PCA: rotate to a basis which maximizes the
variance along principal directions

v=W(z—p)
orthogonal \ feature means
transform sample

can be ineffective for nonlinear manifolds

manifold learning tools:
manifold learning (e.g. isomap, LLE),
autoencoders




Neural Networks and Autoencoders

autoencoder X

e e e encoder

decoder

a model that can reconstruct its inputs
with a constraint on intermediate features

(the encoded representation) X

encoder and decoder: (stacks of) neural network layers

fully connected layer r— f(Wz4D)

1nput \ \
feature / bias

weight
vector activation matrix

function



Autoencoders

simplest autoencoder X

encoder and decoder: single layers, tied weights
encoder

decoder

full network: X
t— Wly—b=W'f(Wz+0b)—b

encoder: y = f(Wzx + )

network is trained to minimize reconstruction error

with a linear activation, the optimal solution is PCA
(where the bias removes the sample mean)

autoencoders are powerful tools for nonlinear manifold learning



Building Expressive Models

deep learning

models constructed from many simple transtormation layers

challenges: eftective learning algorithms and
architectures, intelligent uses of data
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How do we do machine learning?

discriminative models:

Data =~ Model - Labels
extant predicted
leared
generative models:
Data Model Data

extant sampled



How do we do machine learning?

discriminative models:

Data == Model == Labels

extant predicted
conditional probability of labels

joint probability distribution

/

. =
generative models: p(z,y)

Model

extant sampled

Data Data



Discriminative Models

categorical discrimination

regression . ' ' ' '
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Generative Models

learn a probability distribution: how to sample from data
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Hopfhield Networks

early recurrent neural network (1982) > o=
s . R ~
pairwise connections between nodes

{s:} binary states (-1, +1) >

{W:j} connection strengths (couplings)

V
R%,Q\}
S i

it ZWiij > 0,
update rule: s; = . \
. —1 otherwise SR

: 1
energy function: F = 5 Z Wiis:s; Z 0,s;
i\ i
under repeated updates, the network converges
to a local minimum in the energy function




The Ising Model

the Hopfield network energy function is similar to an Ising model:

i —— Z Jijsisj — U Z h;S; Hopfield: all sites ‘adjacent’
1

<ij>
note that the probability of a given state A e~ BE(0)
is dependent on the partition function: g Z3

Zg = Z e~ BE(0)

o

why Ising models?

simple models that embody the Hebbian learning rule:
neurons that fire together, wire together

concept can be used to store “memories” in the network:
attractor states that are local minima in the energy function



Stochastic Networks

while Hopfield networks are deterministic,
[sing models are probabilistic - like generative models

AFE; = E(i on) — E(7 off) energy difference between on/off states

state is activated with probability given by the Boltzmann distribution:

5AE’L == lnpion = lnpioff
1
1 + exp(—SAE;)

— O'(—ﬁAEZ)

Pion =

this type of network is a Boltzmann machine



Boltzmann Machines

1
1 + exp(—BAE;)

Pion = = o(—BAE;)

update step: sample sites and set their states
according to the Boltzmann distribution;
repeat until thermal equilibrium obtained

Structurally, we build a Boltzmann
machine from visible (external) and
hidden (internal) units

Q: how do we set the weights?
(learning/training)




Training Generative Models

T T f Pmodel

Training: the joint distribution of the model should be
adjusted towards the true data distribution

Olnp
aWw (<p23 data E= ng model)

ey

probability of i and j being on




Restricted Boltzmann Machines

training Boltzmann machines is challenging:

 because all states in the network are connected, sampling is
extremely time-intensive (single weight updates must
propagate through the entire network)

e current training algorithms becomes ineftective beyond
small networks

one solution: restricted Boltzmann machines

only connections between
visibile and hidden states




Restricted Boltzmann Machines

RBM energy function:
EF = — Z a;v; — Z bjhj S Z Wijvihj
0 J 2,]
gradient:
Olnp

OW.: . s (<vihj>data = <vihj>mode1)

because the visible states are independent and the hidden
states are independent, each group can be collectively sampled

- Gibbs sampling

RBMs can be eftectively trained and used to build
expressive models (deep belief networks)



Challenges in Generative Models

mixing: transitions
« sampling is challenging: between local minima
e.g. obtaining mixing
» no reliable software packages for
training and using RBMs and
general Markov process models

« demonstrating a diversity of
applications (compete with NNs)

my interests:
« improving sampling methods for generative models using physical
systems

 developing useful software tools for experimenting with generative
models

 exploring the connection between statistical physics models and ML
- are there good architectures arising from other types of models?



Machine learning is making an enormous impact
€he New 1Jork Times
Artificial Intelligence Swarms

Silicon Valley on Wings and Wheels



Machine learning is making an enormous impact
€he New 1Jork Times
Artificial Intelligence Swarms

Silicon Valley on Wings and Wheels

And physicists will play a major role in it
W IEE[]
MOVE OVER, CODERS—PHYSICISTS WILL
SOON RULE SILICON VALLEY



Machine learning is making an enormous impact
€he New 1Jork Times
Artificial Intelligence Swarms

Silicon Valley on Wings and Wheels

And physicists will play a major role in it
WRIR}4D
MOVE OVER, CODERS—PHYSICISTS WILL
SOON RULE SILICON VALLEY

We even share the same problems
Ehe New Pork Times
Artificial Intelligence’s White Guy Problem



Summary

Machine Learning is just great:

- diverse applications

exploding interest

amazing opportunities

deep roots in statistical physics

many open questions

Physicists have the tools to make fundamental contributions
to machine learning, both inside and beyond physics



