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How do we do physics?

DataModelParameters
(well) motivated(kinda) natural extant/future

ResultModelObservable
knowndefined unknown

DataModelPhase Space
approximatedtractable realistic

model building:

calculations:

simulations:



A core tenet of particle physics

We can  
understand  
the model



My own experience in physics (QCD-side)

Evolution of my research program largely governed by the process:

LHC 
Olympics

jet algorithms, 
jet substructure SCET for jets

non-global 
logarithms

fixed order 
calculations

high-precision 
Monte Carlo

resummation

grad school

postdoc

phenomenological 
QCD

increasingly  
technical

theoretical 
foundations

1. finding interesting problems in QCD  
2. understanding the underlying theory 
3. applying it to more interesting problems 
4. rinse and repeat



Modeling beyond physics
Beyond physics, the model may be too complex or just unknown.

A first-principles approach does not apply in these cases.

We need tools capable of model inference that can 
learn and utilize relevant information in the data 

2 common approaches: statistical and deterministic modeling
• statistical : derive the form of the model 
• deterministic : input the form of the model



Reframing the core tenet

We can  
understand  

the data

We can  
understand  
the model

Beyond physics, the model may be too complex or just unknown.

A first-principles approach does not apply in these cases.

We need tools capable of model inference that can 
learn and utilize relevant information in the data 



Statistical vs. Deterministic Modeling
performance

parameter

optimal

deterministic

statistical

deterministic models:

statistical models:

• high accuracy in a region 
of phase space 

• bad failure modes outside 
domain of applicability

• reasonable accuracy 
across phase space 

• graceful failure modes

which should we prefer?



Minimax Optimization

In most applications, we care about performance in the worst case:

• you want your bike/car/train/plane not to crash  

• you want to avoid serious illness 

• you buy insurance for costly rare events 

• you prioritize products working over their features

optimize for the best performance of the worst case

User experience is most sensitive to performance in the worst cases

People tend to remember the worst parts of an experience  
and base a valuation more heavily on that: 

• the worst dishes at a meal 
• reliability of a car 
• annoyances in computer UX (e.g. Mac vs. Windows) 
• everything about flying 



A core tenet of machine learning

Learn expressive models 



Understanding Datasets

unsupervised 
learning

Data

inferred 
structure

supervised 
learning

sampling generative 
model

discriminative 
model

often, we want to transform the data into features as a first step



Feature Extraction
feature extraction: start with a linear model

PCA: rotate to a basis which maximizes the 
variance along principal directions

sample
feature meansorthogonal 

transform

v = W(x� µ)

can be ineffective for nonlinear manifolds
manifold learning tools:  
manifold learning (e.g. isomap, LLE), 
autoencoders



Neural Networks and Autoencoders

autoencoder

a model that can reconstruct its inputs  
with a constraint on intermediate features  

(the encoded representation)

X

X

features
M : X ! X encoder

decoder

encoder and decoder: (stacks of ) neural network layers

weight 
matrix

bias

x ! f(Wx+ b)fully connected layer:

activation 
function

input 
feature 
vector



Autoencoders

X

X

features
encoder

decoder

encoder and decoder: single layers, tied weights
simplest autoencoder

encoder:

full network:

network is trained to minimize reconstruction error

with a linear activation, the optimal solution is PCA 
(where the bias removes the sample mean)

x ! WT
y � b = WT

f(Wx+ b)� b

y = f(Wx+ b)

autoencoders are powerful tools for nonlinear manifold learning



Building Expressive Models

models constructed from many simple transformation layers

deep learning

challenges: effective learning algorithms and  
architectures, intelligent uses of data



How do we do machine learning?

LabelsModelData
extant predicted

DataModelData
extant sampled

discriminative models:

generative models:

learned



How do we do machine learning?

LabelsModelData
extant predicted

DataModelData
extant sampled

discriminative models:

generative models:

M : x ! y

p(x, y)

p(y |x)

conditional probability of labels

joint probability distribution



Discriminative Models
“cat”

categorical discrimination

semantic labeling

Deep Visual-Semantic Alignments for Generating Image Descriptions

Andrej Karpathy Li Fei-Fei
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Abstract

We present a model that generates natural language de-
scriptions of images and their regions. Our approach lever-
ages datasets of images and their sentence descriptions to
learn about the inter-modal correspondences between lan-
guage and visual data. Our alignment model is based on a
novel combination of Convolutional Neural Networks over
image regions, bidirectional Recurrent Neural Networks
over sentences, and a structured objective that aligns the
two modalities through a multimodal embedding. We then
describe a Multimodal Recurrent Neural Network architec-
ture that uses the inferred alignments to learn to generate
novel descriptions of image regions. We demonstrate that
our alignment model produces state of the art results in re-
trieval experiments on Flickr8K, Flickr30K and MSCOCO
datasets. We then show that the generated descriptions sig-
nificantly outperform retrieval baselines on both full images
and on a new dataset of region-level annotations.

1. Introduction
A quick glance at an image is sufficient for a human to
point out and describe an immense amount of details about
the visual scene [14]. However, this remarkable ability has
proven to be an elusive task for our visual recognition mod-
els. The majority of previous work in visual recognition
has focused on labeling images with a fixed set of visual
categories and great progress has been achieved in these en-
deavors [45, 11]. However, while closed vocabularies of vi-
sual concepts constitute a convenient modeling assumption,
they are vastly restrictive when compared to the enormous
amount of rich descriptions that a human can compose.

Some pioneering approaches that address the challenge of
generating image descriptions have been developed [29,
13]. However, these models often rely on hard-coded visual
concepts and sentence templates, which imposes limits on
their variety. Moreover, the focus of these works has been
on reducing complex visual scenes into a single sentence,
which we consider to be an unnecessary restriction.

In this work, we strive to take a step towards the goal of

Figure 1. Motivation/Concept Figure: Our model treats language
as a rich label space and generates descriptions of image regions.

generating dense descriptions of images (Figure 1). The
primary challenge towards this goal is in the design of a
model that is rich enough to simultaneously reason about
contents of images and their representation in the domain
of natural language. Additionally, the model should be free
of assumptions about specific hard-coded templates, rules
or categories and instead rely on learning from the training
data. The second, practical challenge is that datasets of im-
age captions are available in large quantities on the internet
[21, 58, 37], but these descriptions multiplex mentions of
several entities whose locations in the images are unknown.

Our core insight is that we can leverage these large image-
sentence datasets by treating the sentences as weak labels,
in which contiguous segments of words correspond to some
particular, but unknown location in the image. Our ap-
proach is to infer these alignments and use them to learn
a generative model of descriptions. Concretely, our contri-
butions are twofold:

• We develop a deep neural network model that in-
fers the latent alignment between segments of sen-
tences and the region of the image that they describe.

style transfer

regression

AIs will eventually  
replace us all



J(�)d�bJ(�)d�

Generative Models
learn a probability distribution: how to sample from data

Jacobian  
(observed via sampling)

learned Jacobian

given points, learn the 
underlying distribution

physicists do this  
all the time



Hopfield Networks
early recurrent neural network (1982)

pairwise connections between nodes

si =

⇢
+1 if

X

j

Wijsj � ✓i

�1 otherwise

update rule:

{si}

{Wij}
binary states (-1, +1)

connection strengths (couplings)

E = �1

2

X

i,j

Wijsisj +
X

i

✓isi

threshold

energy function:

under repeated updates, the network converges  
to a local minimum in the energy function



The Ising Model
the Hopfield network energy function is similar to an Ising model:

E = �
X

<i j>

Jijsisj � µ
X

i

hisi Hopfield: all sites ‘adjacent’

P�(s) =
e��E(�)

Z�

Z� =
X

�

e��E(�)

note that the probability of a given state  
is dependent on the partition function:

why Ising models? 
simple models that embody the Hebbian learning rule:  
neurons that fire together, wire together

concept can be used to store “memories” in the network:  
attractor states that are local minima in the energy function



Stochastic Networks
while Hopfield networks are deterministic,  
Ising models are probabilistic - like generative models

�Ei = E(i on)� E(i o↵)

��Ei = ln pi on � ln pi o↵

pi on =

1

1 + exp(���Ei)
= �(���Ei)

energy difference between on/off states

state is activated with probability given by the Boltzmann distribution:

this type of network is a Boltzmann machine



Boltzmann Machines

Structurally, we build a Boltzmann 
machine from visible (external) and 
hidden (internal) units

pi on =

1

1 + exp(���Ei)
= �(���Ei)

update step: sample sites and set their states 
according to the Boltzmann distribution;  
repeat until thermal equilibrium obtained

Q: how do we set the weights?  
(learning/training)



Training Generative Models

the joint distribution of the model should be 
adjusted towards the true data distribution

pdata
p
model

Training:

probability of i and j being on

@ ln p

@Wij
=

�
hpijidata � hpijimodel

�



Restricted Boltzmann Machines
training Boltzmann machines is challenging:

• because all states in the network are connected, sampling is 
extremely time-intensive (single weight updates must 
propagate through the entire network) 

• current training algorithms becomes ineffective beyond 
small networks

one solution: restricted Boltzmann machines

only connections between 
visibile and hidden states



Restricted Boltzmann Machines
RBM energy function:

E = �
X

i

aivi �
X

j

bjhj �
X

i,j

Wijvihj

@ ln p

@Wij
=

�
hvihjidata � hvihjimodel

�
gradient:

because the visible states are independent and the hidden 
states are independent, each group can be collectively sampled  

- Gibbs sampling

RBMs can be effectively trained and used to build  
expressive models (deep belief networks)



Challenges in Generative Models

my interests: 
• improving sampling methods for generative models using physical 

systems 
• developing useful software tools for experimenting with generative 

models   
• exploring the connection between statistical physics models and ML 

- are there good architectures arising from other types of models?

• sampling is challenging:  
e.g. obtaining mixing 

• no reliable software packages for 
training and using RBMs and  
general Markov process models 

• demonstrating a diversity of 
applications (compete with NNs)

mixing: transitions 
between local minima



Machine learning is making an enormous impact



Machine learning is making an enormous impact

And physicists will play a major role in it



Machine learning is making an enormous impact

And physicists will play a major role in it

We even share the same problems



Summary
Machine Learning is just great: 

• diverse applications 
• exploding interest 
• amazing opportunities 
• deep roots in statistical physics 
• many open questions 

Physicists have the tools to make fundamental contributions 
to machine learning, both inside and beyond physics 


