Status of SXFEL and DCLS project in China

Qiang Gu

For the project team

Outline

- Introduction to the high gain FELs in China
- Status of <u>DaLian</u> <u>Coherent</u> <u>Light</u> <u>Source</u> (DCLS)
- Status of <u>Shanghai X-ray Free Electron Laser Test Facility</u> (SXFEL-TF) and the <u>User Facility</u> (SXFEL-UF)
- Summary

Introduction to the high gain FELs in China

- Later on in late 1990s, a high-gain FEL program called SDUV-FEL was initiated. It started the FEL tests (SASE, HGHG and ECHO) since 2009 and closed in 2016.
- In 2007, a soft X-ray FEL test facility (SXFEL-TF) was proposed and began its construction in 2014. Its user facility project just funded and started 2016.
- In 2012, an EUV-FEL, DCLS, was initiated and funded in 2013.
- Recently, a proposal of hard X-ray FEL facility has been approved and will be opened to the users till 2025.

Shanghai X-ray FEL Test Facility 300m, 840MeV, 9-40nm

DaLian Coherent Light Source

Introduction to DCLS

- DCLS is the first user facility based on the Free electron laser technology and user guided large scientific instrumentation in China.
- DCLS is an extreme ultraviolet coherent light source for catalytic chemistry, surface chemistry, dynamics and spectra in energy chemistry. This facility has a great advantage in high sensitivity and ultrafast processes detection of atoms, molecules and surface electronic states.
- The project is funded by NSF, in collaboration with SINAP and NSRL

	oneniear	i tineti				
Large database contains:	Reaction mechanisms grow with molecular complexity:					
Thermodynamic properties of	Fuel	H ₂ (hydrogen)	CH ₄ (methane)	C ₃ H ₈ (propane)	C ₆ H ₁₄ (hexane)	C ₁₆ H ₃₄ (cetane)
species	Number of species	7	30	100	450	1,200
 Reaction rate parameters 	Number of reactions	25	200	400	1,500	7,000

More complex fuels make much greater demands on computing time during modeling. Until improvements were made in advanced parallel computing, only simple fuel molecules could be modeled.

Layout and main parameters of DCLS

Norm. Emitt.	<2umrad	FEL wavelength	50~150 nm, tunable
Bunch charge	500 pC	Working scheme	HGHG
Peak current	300 A	Peak power	100~300 MW
Beam energy	300 MeV	Bunch length(FWHM)	~100fs, ~1ps
Repetition rate	50 Hz		

Wide tunable HGHG demonstration @SDUV

Milestones

2012.03 Starting of DCLS 2013.08 International Review of TDR of DCLS 2013.09 Sino-Germany Symposium I **2013.12 Prototype of Undulator** 2014.04 Review of TDR of Beamline **2014.10 Starting of Construction** 2015.10 Sino-Germany Symposium II 2016.04 LINAC installation **2016.09 Undulator spontaneous emission** 2016.11 FEL SASE lasing 2016.12 FEL HGHG lasing Wait for the first user experiment

 $>\!100\;\mu$ J @ 90nm 118nm and 148nm

HGHG 210uJ @133nm

Summary of DCLS commissioning

Design number	Achieved now
Tunable Wavelength : 50 – 180 nm	✓133nm, 88nm,
Pulse Energy : >100 uJ (1 mJ)	√210 uJ
Pulse length: 100 fs /1 ps	√~1ps
> Beam Size: ~1mm	✓Not measured at end
Bandwidth : Fourier transform limit	✓<0.1%(HGHG), 1%(SASE)
> Jitter: <100 fs	✓Not measured
Rep Rate: 50 Hz	✓10Hz
Fully coherent	✓Not mearsured
Polarization: Horizontal	✓ Not measured

- Photon Beam position, intensity, wavelength will be recorded in real time.
- Estimated beam transfer efficiency is about 85% after 2 mirrors

Shanghai X-ray Free Electron Laser Test Facility

Introduction to the SXFEL-TF

- The SXFEL-TF is funded by the national government and hosted by SINAP, CAS.
- The goal of this project is to build a soft X-ray FEL facility with a wavelength of 8.8 nm using cascaded harmonic generation scheme.
 Besides the FEL facility, a 9-cell SRF cavity module will be developed by PKU in the meantime.
- Different lasing scheme, and various key components and technologies could be tested in the test facility and it will the approach to the hard X-ray FEL users facility in China.
- The total budget of the FEL facility is about 30M\$ and the construction term is 3 years (2014.12~2017.12)

Layout and main parameters of SXFEL-TF

Linac

Bunch charge (nC)	0.5
Beam energy (GeV)	0.84
Bunch length (ps, FWHM)	≤ 1.0
Norm. emit. (mm.mrad, rms)	< 2.0
Energy spread (rms)	< 0.15%
Peak current (A)	≥ 500
Rep-rate (Hz)	1-10

Radiator

Scheme	HGHG-HGHG/ EEHG-HGHG	EEHG
Harmonics	6×5	30
FEL wavelength (nm)	8.8	8.8
FEL pulse length (fs)	< 100fs	< 100fs
FEL power (MW)	>100	>100

Milestones

- 2007.7: Proposal submitted
- 2011.2: Approved by the national government
- 2014.4: PDR approval with budget planning
- 2014.12: Groundbreaking
- 2016.6: Building and utility system delivered to users
- 2016.9: Installation started
- 2016.12: first light observed

Energy: ~700MeV, limited by C band TWS gradient

Shanghai X-ray Free Electron Laser User Facility

<u>Shanghai X-ray Free Electron Laser User</u> <u>Facility</u>

Parameters	Test Facility	User FEL1	User FEL2	Unit
Output Wavelength	9	2~10	1.2-3	nm
FEL scheme	HGHG-EEHG	HGHG-EEHG	SASE, Self-seeding	
Bunch charge	0.5~1	~0.5	~0.2	nC
Beam Energy	0.84	1.0-1.6	1.0-1.6	GeV
Normalized emittance	<2.0	<1.0	<0.5	mm.mrad
Peak current	~0.5	0.7	0.7	kA
Rep. rate	1~10	10-50	10-50	Hz

- SXFEL-UF is based on SXFEL-TF:
 - Linac upgrade
 - New FEL lines, a seeded FEL and a SASE FEL
 - 5 experiment stations
- Total budget is 100M\$, funded mainly by Shanghai local government
- Construction of the facility started in 2016 and it will be opening to users in 2019

Linac upgrade

Energy upgrade:

- 1 S-band klystron and 2 SLEDs
- 1 C-band unit
- 3 C-band units
- 1 X-band TDS

New FEL beamlines

I: Seeded FEL line: add 7 undulator units

SXFEL-UF is Strongly supported by scientific community

First experiments

Summary

- SINAP involved in all the high gain FEL project in China and built these accelerators and FEL radiators with in-house team and technologies.
- DCLS has reached the end of commissioning. The electron beam and FEL radiation parameters have meted the design requirement. The experimental station now is waiting for the first FEL light.
- SXFEL-TF started the commissioning since end of 2016. The commissioning is difficult and we have found all the reason of the these problems. Some components, like C band TWS have serious problem and the recovery will take lot of effort and time.
- SXFEL-UF started the construction at end of 2016. The schedule seems tight and overlaps with SXFEL-TF, which could affect on both projects.

Thanks for your attention Questions and comments please

Future hard X-ray FEL in SINAP, Shanghai

