Multipactor and long-pulse phenomena

Benito Gimeno Martínez^{1,2} and co-workers

¹Department of Applied Physics and Electromagnetics – ICMUV, University of Valencia (Spain)

² European Space Agency - Val Space Consortium, Valencia (Spain)

Index

• Introduction

Objectives

• Multipactor simulation algorithm

Results

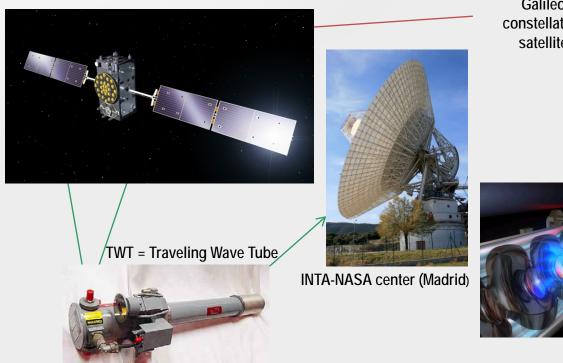
Index

• Introduction

- Objectives
- Multipactor simulation algorithm
- Results

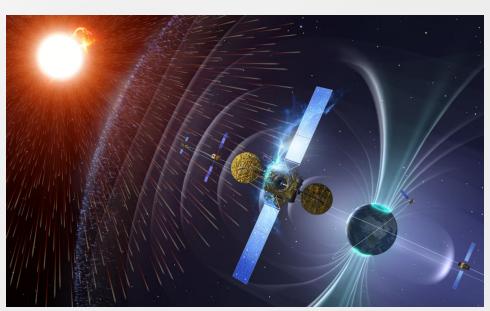
What is the multipactor effect?

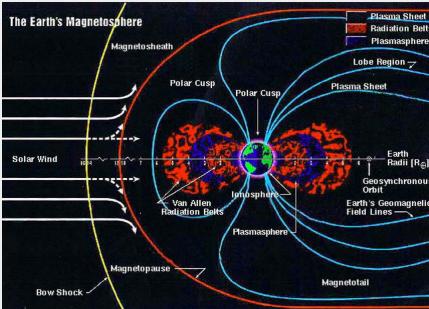
Multipactor breakdown is an electron avalanche-like discharge occurring in components operating under vacuum conditions and high-power electromagnetic fields.



Galileo constellation satellite

- Solar activity causes a continuous flux of high energy elemental particles towards the spaceships.
- These particles can penetrate in the satellites, reaching the electromagnetic field region of the passive RF components and leading to a very harmful multipactor discharge.

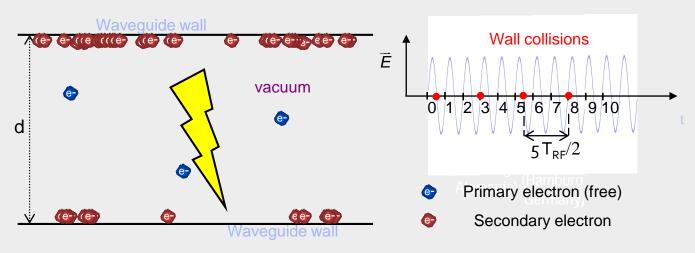




How is the discharge produced?

Basic steps:

- Free electrons reach the RF electromagnetic field zone.
- Electrons are accelerated by the RF electric field towards metallic walls of the device.
- Each colliding electron may release one or more secondary electrons from the metallic surface.
- RF electric field changes polarity and those new electrons released are pushed towards opposite wall.
- This chain reaction causes an exponential growth in the electron population inside the device leading to a multipactor discharge .

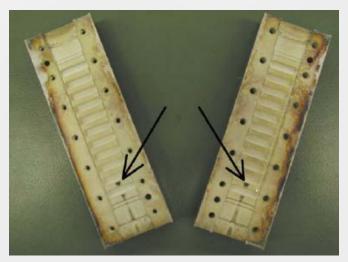


Effects of a multipactor discharge on the device

- Increase of signal noise
- Increase of reflected power
- Heating up of device walls
- Detuning of resonant cavities
- Physical damages

Degradation of the device performance

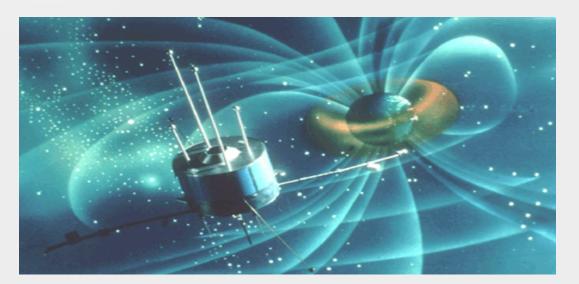
Limitation of the managed RF power



Low-pass filter

Kapton window

- In this undesired scenario the space agencies have to control and predict the possible existence of a multipactor discharge occurring within on-board microwave sub-systems: replacement of equipments is NOT POSSIBLE in a satellite...
- Due to this, assessment of the multipactor risk in the design process of satellite devices is crucial to avoid the appearance of the discharge during its operation.



Multipactor theory in parallel-plate waveguide ("constant-v" theory)



Scheme of a parallel plate waveguide

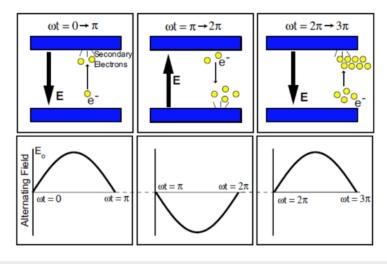
Excitation field

$$\vec{E}_{RF} = -\frac{V_0}{d}\sin\omega t\,\hat{x}$$

Non-relativistic Lorentz force

$$\vec{F}_L = -e\vec{E}_{RF}$$

Differential equation of motion
$$\ddot{x} = \frac{eV_0}{m_e d} \sin \omega t$$



Basics steps of the multipactor discharge

$$\omega = 2\pi f \qquad f \text{ is the RF frequency} \\ -e \text{ is the electron charge} \\ m_e \text{ is the electron mass}$$

Initial
$$\omega t_0 = \phi$$
 $\dot{x}(t_0) = v_0$ conditions $\dot{x}(t_0) = x_0$
$$x = x_0 + \frac{v_0}{\omega}(\omega t - \phi) + \frac{eV_0}{m_e \omega^2 d}[(\omega t - \phi)\cos\phi - \sin\omega t + \sin\phi]$$

$$v = v_0 + \frac{eV_0}{m_e \omega d}(\cos\phi - \cos\omega t)$$

Multipactor theory in parallel-plate waveguide (II)

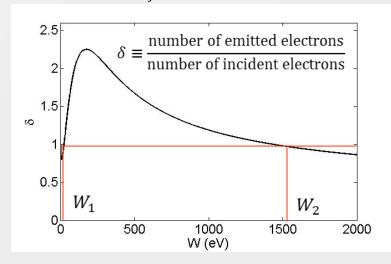
Conditions for the multipactor discharge:

1. Synchronism between the electron and the RF electric field.

$$\omega t_i = \phi + m\pi$$
; $m = 1, 3, 5, 7, ...$

2. Proper impacting energy to release secondary electrons.

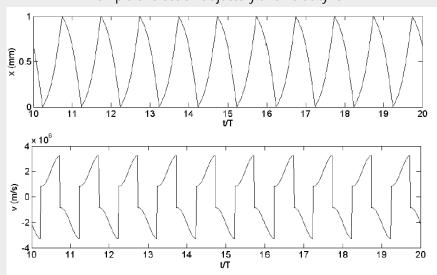
Secondary electron emission coefficient



 t_i , impacting time

m , multipactor order (number of half-periods that takes the electron to cross the gap)

Example of electron trajectory and velocity for m = 1



Multipactor theory in parallel-plate waveguide (III)

$$x = x_0 + \frac{v_0}{\omega}(\omega t - \phi) + \frac{eV_0}{m_e \omega^2 d}[(\omega t - \phi)\cos\phi - \sin\omega t + \sin\phi]$$

$$v = v_0 + \frac{eV_0}{m_e \omega d}(\cos\phi - \cos\omega t)$$

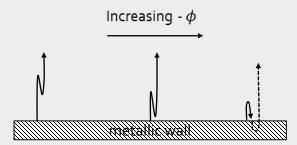
$$\omega t_i = \phi + m\pi \quad ; \quad m = 1, 3, 5, 7, \dots$$

$$V_0 = \frac{m_e}{e} \frac{\omega d(\omega d - m\pi v_0)}{m\pi \cos \phi + 2\sin \phi}$$

$$v_f = v_0 + \frac{2eV_0}{m_e\omega d}\cos \phi$$

In order to ensure the synchronism the RF phase must be within a certain range

$$\phi_{min} \le \phi \le \phi_{max}$$



Non-return limit

$$\begin{array}{c}
x = 0 \\
v = 0
\end{array}
\longrightarrow \phi_{min}$$

The system has not analytical solution

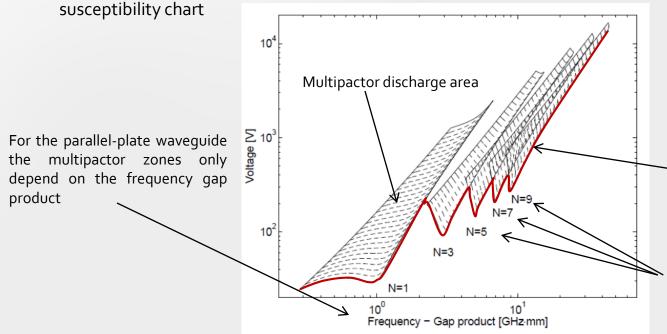
 ϕ_{max} is chosen as the value that minimizes the resonant voltage V_0

$$\phi_{max} = \tan^{-1}\left(\frac{2}{m\pi}\right)$$

Multipactor theory in parallel-plate waveguide (IV)

$$W_1 < W < W_2$$
 \longrightarrow $(v_1 - v_0) \frac{m_e \omega d}{2e \cos \phi} \le V_0 \le (v_2 - v_0) \frac{m_e \omega d}{2e \cos \phi}$

After imposing the conditions for the onset of the multipactor discharge it is possible to obtain the multipactor



[1] R. Udiljak, "Multipactor in low pressure gas", Master's thesis, Chalmers University of Technology, Goteborg, Sweden, 2004.

The lower envelope of the multipactor zones is named as the multipactor voltage threshold

Higher multipactor modes appear when the frequency gap increases

Multipactor susceptibility chart extracted from [1]

Multipactor growth model for parallel-plates

As we have just seen for parallel-plate waveguides:

- The multipactor resonant electrons cross the gap between surfaces in an odd number of half-periods of the RF signal (m = 1, 3, 5, 7...)
- The value of the SEY coefficient δ will be the same in the successive impacts due to periodic trajectory and velocity of the resonant electron

Under these assumptions, the evolution of the electron population with time can be obtained as follows:

 N_0 , electron population at t=0

 N_n electron population after the n-th impact

 δ SEY at the collisions

$$N_1 = N_0 \delta$$

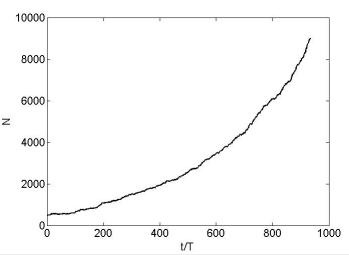
$$N_2 = N_1 \delta = N_0 \delta^2$$

$$N_n = N_0 \delta^n = N_0 e^{n \ln \delta}$$

$$t_n = n \frac{m}{2f}$$

Time of the n-th impact

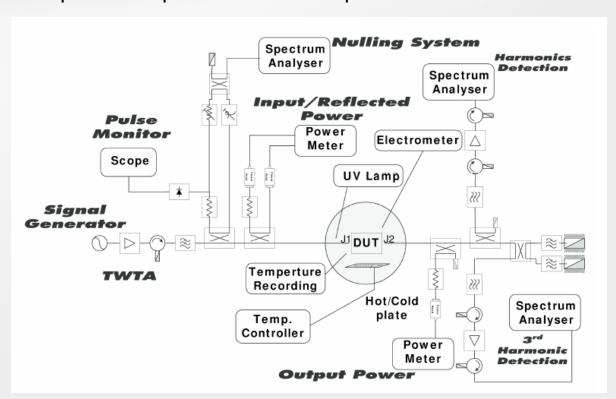
$$N(t_n) = N_0 e^{t_n \frac{2f}{m} \ln \delta} = N_0 e^{\alpha t_n}$$



Results for numerical simulations for the electron population as a function of the normalized time

$$= N_0 e^{\alpha t_n} \qquad \qquad \alpha = \frac{2f}{m} \ln n$$

Multipactor experimental set-up



Free electrons sources:

- UV lamp
- Radioactive source
- Regulated electron gun

Multipactor detection methods:

- Electron probe
- Nulling system
- Third harmonic detection

Nulling system

Index

Introduction

Objectives

Multipactor simulation algorithm

Results

II. Objectives

The objective of this presentation is to study the multipactor effect in microwave waveguides. Concretely the following topics will be considered:

- Mitigation of the multipactor discharge in coaxial transmission lines by means of an external magnetostatic field
- > Study of the multipactor effect in ridge and multi-ridge waveguides
- Analysis of the multipactor breakdown in coaxial lines excited with digital modulated signals
- Multipactor with ferrite materials: parallel-plate waveguide loaded with a magnetized ferrite slab

Index

Introduction

Objectives

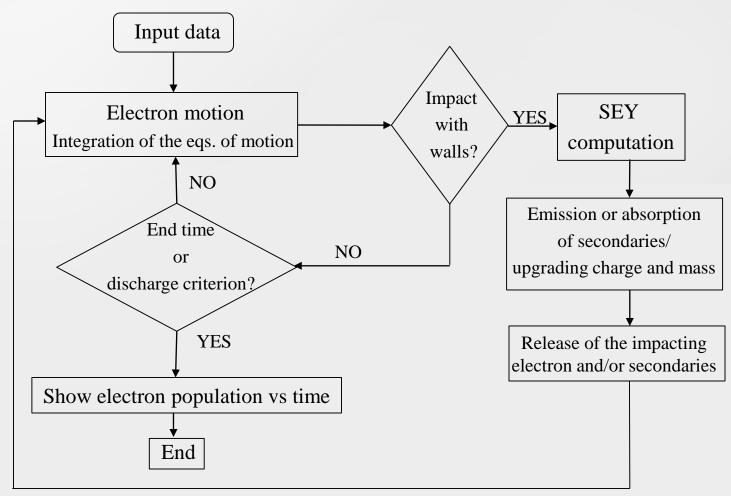
• Multipactor simulation algorithm

Results

Basic block diagram of the Monte-Carlo multipactor prediction tool

Input data:

- Waveguide dimensions
- RF frequency
- Signal type
- Initial number of electrons
- Maximum simulation time
- Discharge criteria
- RF voltage



Electron dynamics

The electron dynamics is described by the relativistic Lorentz Force:

$$\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = \frac{d\vec{p}}{dt}$$

$$\vec{p} = m_0 \gamma \vec{v}$$

$$\gamma = 1/\sqrt{1 - (v/c)^2}$$

where m_o is the electron mass at rest, q=-e is the electron charge, v is the magnitude of the velocity vector, γ is the relativistic factor, \vec{E} and \vec{B} are the total electric and magnetic field existing within the device

$$\vec{E} = \vec{E}_{RF} + \vec{E}_{SC} + \vec{E}_{pol} \qquad \qquad \vec{B} = \vec{B}_{RF} + \vec{B}_{dc}$$

where \vec{E}_{RF} and \vec{B}_{RF} are the RF electric and magnetic field, \vec{E}_{sc} arises due to the space charge effect of the electron cloud, \vec{E}_{pol} appears when a dielectric surface emits or absorbs electrons in an unbalanced way, \vec{B}_{dc} is an external magnetic field applied in certain circumstances (e. g. for magnetize a ferrite or for multipactor mitigation purposes

Electron dynamics (II)

• The typical electron velocities in the spacial communication systems are quite below the value of the speed of light in vacuum and, as a consequence, the relativistic formulation can be approximated considering that $\gamma \approx 1$,

$$\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = m_0 \vec{a}$$

Finally, the problem can be expressed as a linear system of coupled second order differential equations:

$$\vec{F}_L = q(\vec{E} + \vec{v} \times \vec{B}) = m_0 \frac{d\vec{v}}{dt} = m_0 \frac{d^2 \vec{r}}{dt^2}$$

which has to be numerically solved.

- To do that, a Velocity-Verlet algorithm was employed to solve the differential equations (≈ 300 integration steps per RF carrier period):
 - Accurate
 - Efficient
 - Stable

L. Verlet, "Computer 'experiments' on classical fluids. I. Thermodynamical properties of Lennard–Jones molecules," Phys. Rev., vol. 159, no. 1, pp. 98–103, Jul. 1967.

Space charge and polarization electric field (parallel-plate waveguide)

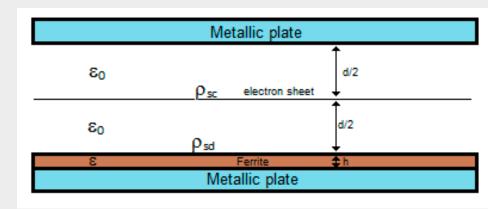
- The coulombian repulsion among the electrons (space charge effect) is taken into account by considering that the electric charge due to the increase in the electron population is accumulated in a single electron sheet of negligible thickness placed in the middle-gap of the waveguide.
- The polarization electric field in the ferrite slab appears when it becomes electrically charge as a consequence of the emission/absorption of secondary electrons.

$$\vec{E}_{sc} = \begin{cases} -\frac{\rho_{sc}}{2\varepsilon_0 \left(1 + \frac{h}{\varepsilon_r d}\right)} \hat{y} & h \le y \le h + \frac{d}{2} \\ \frac{\rho_{sc}}{\varepsilon_0} \left[1 - \frac{1}{2\left(1 + \frac{h}{\varepsilon_r d}\right)}\right] \hat{y} & h + \frac{d}{2} \le y \le h + d \end{cases}$$

$$\vec{E}_{pol} = \frac{\rho_{sd}}{\varepsilon_0} \left[1 - \frac{1}{\left(1 + \frac{h}{\varepsilon_r d}\right)} \right] \hat{y} \qquad h \leq y \leq h + d$$

$$\rho_{sc} = -\frac{eN(t)}{A} \hspace{1cm} \text{A: multipactor discharge area} \\ N: electron population within the waveguide} \\ \rho_{sd} = \frac{eN_{ext}(t)}{A} \hspace{1cm} \text{N}_{\text{ext}} : \text{number of electrons extracted from the ferrite slab} \\$$

Gauss's Law
$$\longrightarrow \oint_{\partial V} \vec{E} \cdot d\vec{A} = \frac{1}{\epsilon_o} \int_V \rho \ dV$$
 in the vacuum



Scheme of the ferrite loaded parallel-plate waveguide with the space charge electron sheet $$_{\rm 21}$$

Space charge electric field (coaxial line)

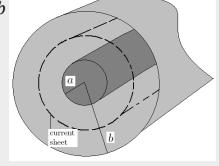
Similarly as for the parallel-plate waveguide, it is assumed that the electric charge is accumulated in a single electron sheet of negligible thickness located in the center of the gap of the coaxial waveguide and charged with a surface electron density $\rho_s(t)$.

 $r_s = (a+b)/2$: radius of the electron sheet

N(t): electron population at time t

of the electron sheet

h: sheet height



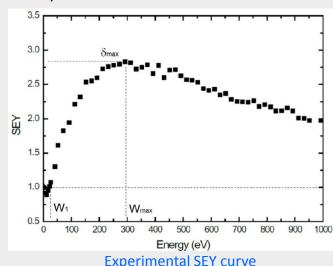
Scheme of the coaxial transmission line and the single electron sheet 22

Interaction electron-surface

When an electron collides with the devices surfaces, the interaction between them is modelled by means of the Secondary Electron Yield (SEY) coefficient δ , which is defined as

$$\delta = \frac{\text{number of emitted electrons}}{1 \text{ impacting electron}}$$

- The SEY coefficient depends on:
 - Kinetic energy of the primary electron (W)
 - Incidence angle of primary electron (ξ)
 - Surface roughness

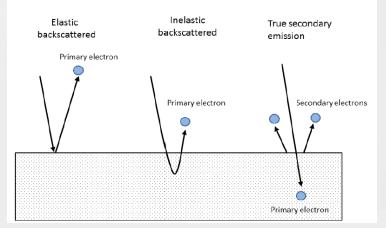


- Despite the concrete values of the SEY coefficient are different for each material, the shape of the SEY curve is universal for all of them (metal, dielectrics, ferrite).
- There are several models to parameterize the SEY curve. In this work, depending on the multipactor scenario, two different models have been employed: the Furman and Pivi model and the modified Vaughan's model.

Furman and Pivi SEY model^{1,2}

When an electron individual collides with a surface it can be:

- Elastically backscattered
- Inelastically backscattered
- Absorbed
- Generate true secondaries



Different components of the secondary electron emission

Contribution of elastically backscattered electrons

$$\varepsilon(E_p) = \frac{\varepsilon_1}{1 + \frac{E_p}{E_{e1}}} + \frac{\varepsilon_2}{1 + \frac{E_p}{E_{e2}}}$$

Contribution of true secondaries

$$\delta(E_p) = \delta_m \frac{s \frac{E_p}{E_m}}{s - 1 + \left(\frac{E_p}{E_m}\right)^s}$$

Contribution of inelastically backscattered electrons

$$\eta(E_p) = a(1 - bE_p)E_p^{\gamma}exp\left(-\left(\frac{E_p}{E_m}\right)^{\mu}\right)$$

 $E_p \text{ is the primary electron energy}$ $E_b = c + Zd \ b = 3.0 \times 10^{-5}, c = 300, d = 175$ $\gamma = 0.56 \ \mu = 0.70$ $a \in [7 \times 10^{-3}, 10 \times 10^{-3}]$ $\varepsilon_1 = \varepsilon_0 - \varepsilon_2$ $\varepsilon_2 = 0.07, E_{e1} = g/\sqrt{Z}, E_{e2} = hZ^2$ g = 50, h = 0.25 $\varepsilon_0 \text{ elastic contribution for } E_p = 0$ Z is the atomic number $\delta_m, E_m, \text{ and } s \text{ are parameters of the material}$

¹M. A. Furman and M. T. Pivi, "Probabilistic model for the simulation of secondary electron emission", Physical Review Special Topics- Accelerators and Beams, vol. 5, 124404 (2002).

² J. de Lara, F. Perez, M. Alfonseca, L. Galan, I. Montero, E. Roman, D.R. Garcia-Baquero, "Multipactor prediction for on-board spacecraft RF equipment with the MEST software tool", IEEE Transactions on Plasma Science, vol. 34, no. 2, pp. 476-484, April 2006.

Z= atomic number

Furman and Pivi SEY model (II)

Angular dependence for the different contributions:

$$\eta(E_p, \varphi) = \eta(E_p)^{\cos \varphi} C_1^{1-\cos \varphi}$$

$$\varepsilon(E_p, \varphi) = \varepsilon(E_p)^{\cos \varphi} C_2^{1-\cos \varphi} \qquad \chi = 0.89$$

 $C_{1} = \chi \frac{\eta(E_{p})}{\eta(E_{p}) + \varepsilon(E_{p})}$ $C_{2} = \chi \frac{\varepsilon(E_{p})}{\eta(E_{p}) + \varepsilon(E_{p})}$ $C_{1} + C_{2} = \chi$

$$k = pZ + r$$
, $p = 0.0027$ For a clean flat surface, $r = 0$

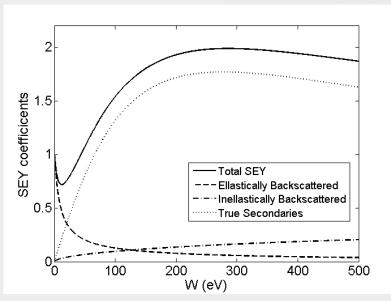
$$\delta(E_p, \varphi) = \delta(E_p) \frac{k+1}{k + \cos \varphi}$$

The probability for each kind of emission is given by:

$$P_e(E_p, \varphi) = \varepsilon(E_p, \varphi)$$

$$P_b(E_p,\varphi) = \eta(E_p,\varphi)$$

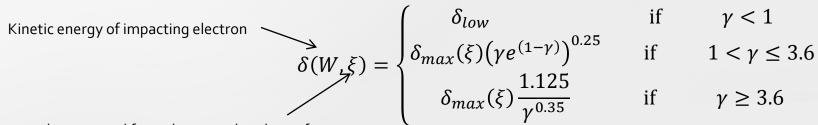
ightharpoonup True Secondaries $P_s(E_p, \varphi) = 1 - P_e(E_p, \varphi) - P_b(E_p, \varphi)$



Different contributions to the SEY coefficient

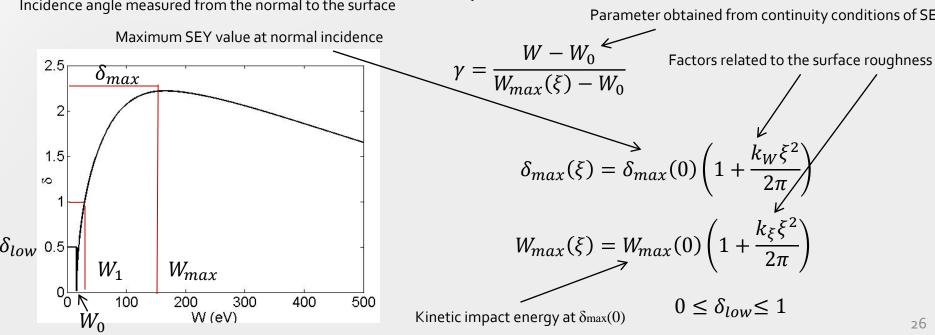
Modified Vaughan's SEY model

This model does not distinguish among the different contributions or interactions, only provides the total SEY coefficient



Incidence angle measured from the normal to the surface

Parameter obtained from continuity conditions of SEY



Electron model

In this work, it has been considered two different electron models depending on the specific scenario: the effective and the individual electron models.

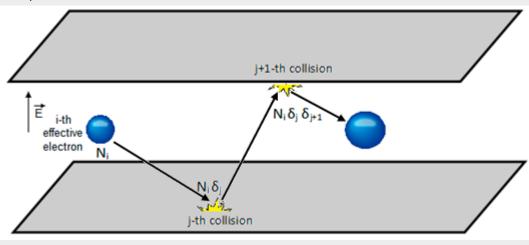
Effective electron:

- This model consists of the 3D tracking of a set of N_e effective electrons
- Each effective electron has associated an electron population N_i which is upgraded when the electron collides with the device walls electron population i-th electron population after the impact $N_i(t+\Delta t)=N_i(t)\delta_i$

$$N_i(t) = \prod_{j=1}^k \delta_i^{(j)}$$

 $\delta_i^{(j)}$ is the SEY value of the j-th impact of the i-th electron

Total electron population within the device
$$N(t) = \sum_{i=1}^{N_e} N_i(t)$$



Scheme of the effective electron model

before the impact

Effective electron (II)

- The modified Vaughan's SEY model is implemented with the effective electron model
- After the collision, the effective electron is launched back from the impact point. The velocity and angle of the released electron depends on the impact kinetic energy of the primary electron:
 - ▶ If the impact kinetic energy W < W₀: effective electron is elastically reflected as in a specular reflection (the magnitude and the angle of the velocity vector with regard the normal plane to the impact surface do not change).
 - If the impact kinetic energy $W \ge W_o$: the effective electron is treated as a true secondary electron. It implies that:
 - 1. The output kinetic energy of the effective electron is calculated by means of a Rayleigh probability distribution density:

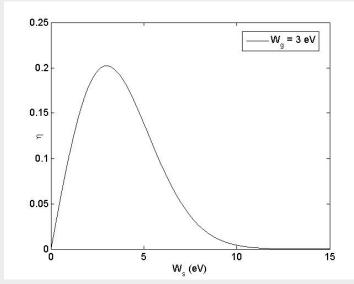
$$\eta(W_S) = \frac{W_S}{W_g^2} exp\left(-\frac{W_S^2}{2W_g^2}\right)$$

Normalization condition $\longrightarrow \int_0^\infty \eta(W_s) dW_s = 1$

 W_s = Departure energy of the secondary electron

 $\eta(W_s)$ = Probability of release a secondary electron with a departure energy of W_s

 W_q = Standard deviation value



Effective electron (III)

In order to implement this concept in the Monte-Carlo method, the algorithm generates a random real number $u \in [0,1]$, and the departure energy is calculated:

$$W_S = W_g \sqrt{-2 \ln u}$$

Note the Energy Conservation Principle has to be satisfied. It implies that the output energy cannot exceed the value of the impacting energy.

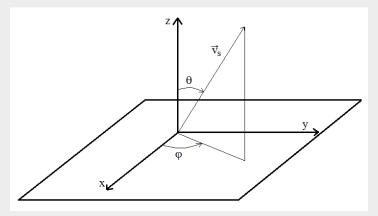
- 2. The direction of the velocity vector of the electron is calculated in a local spherical coordinate system centred at the impact point:
- The azimuthal angle $\varphi \in [0,2\pi[$ is easily calculated by means of a uniform probability density:

$$\varphi = 2\pi u$$

- The elevation angle θ has to be computed by means of the <u>cosine law</u>:

$$\theta = \sin^{-1}(\sqrt{u})$$

J. Greenwood, "The correct and incorrect generation of a cosine distribution of scattered particles for Monte-Carlo modelling of vacuum systems", Vacuum, vol. 67, pp. 217–222, 2002



Individual electron

- In this model, the number of tracked particles varies with the ongoing of the simulation and each particle represents only a real electron.
- The Furman and Pivi SEY model is implemented allowing to distinguish the following types of interactions: elastic backscattering, inelastic backscattering and true secondary electrons.

• When an electron impacts a surface the interaction type is obtained by means of the Monte-

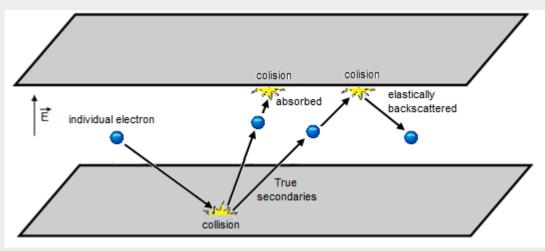
Carlo method:

$$u \in [0,1]$$
 real random number

Elastic backscattered
$$u < P_e(E_p, \varphi)$$

Inelastic backscattered
$$P_e(E_p, \varphi) \le u < P_e(E_p, \varphi) + P_b(E_p, \varphi)$$

True secondary
$$u \ge P_e(E_p, \varphi) + P_b(E_p, \varphi)$$



Scheme of the individual electron model

Individual electron (II)

After the collision, if not absorbed, the electron is re-emitted from the impacting point. The magnitude and angle (with regard the normal of the impacting surface) of the output velocity depend on the collision type of the primary electron:

- <u>Elastic collision</u>. The output energy is equal to the impacting energy, $W = W_i$. The departure angle is equal to the incidence angle (specular reflection).
- Inelastic collision. The output energy is less than the impacting energy $W < W_{i.}$ The departure angle is equal to the incidence angle.
- Collision generating <u>true secondaries</u>:

Mean number of true secondaries per impacting electron
$$\longrightarrow \lambda(E_p, \varphi) = \frac{\delta(E_p, \varphi)}{1 - \varepsilon(E_p, \varphi) - \eta(E_p, \varphi)}$$

The exact number of true secondaries *n* is determined as:

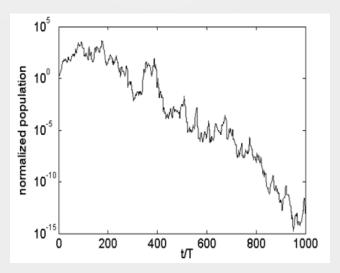
$$\mathbf{n} = \begin{cases} \lambda_i & \text{if} \quad u < \lambda_f \\ \lambda_i + 1 & \text{if} \quad u > \lambda_f \end{cases}$$
(Note that if $\mathbf{n} = \mathbf{0}$ then the impacting electron is absorbed)
$$\begin{aligned} u &\in [0,1] \text{ real random number} \\ \lambda_i & \text{integer part of } \lambda \\ \lambda_f & \text{fractional part of } \lambda \end{aligned}$$

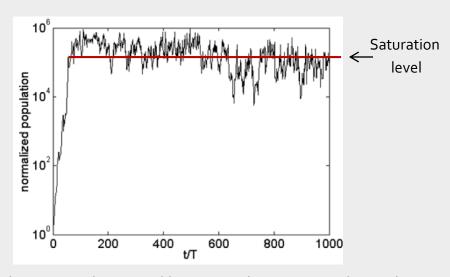
The true secondary electrons are released with an output energy given by the Raileigh distribution and an angle following the Cosine Law, similarly as described in the effective electron case

Multipactor criteria

A multipactor criterion must be established in the simulations in order to decide if the discharge has taken place. Mainly, the are two possibilities:

- The number of electrons exceeds a threshold value, typically a certain number of times the initial population value.
- It is reached a steady state in the electron population due to the space charge effect when the electron number becomes very high.





The electron population diminishes and no discharge is expected

Electron population quickly grows and saturation is observed

Index

Introduction

Objectives

• Multipactor simulation algorithm

Results

Mitigation of the multipactor discharge in coaxial transmission lines by means of an external magnetostatic field

IV. Results

Multipactor mitigation techniques

There are several techniques in order to avoid the onset of the multipactor discharge:

- <u>Surface treatments</u> aimed to reduce the SEY coefficient of the surfaces. For example: chemical polishing, groove insertions, surface coatings, etc. Inconveniences: surface treatments degrade with time, grooves can impair the RF performance.
- <u>External DC electric and/or magnetic fields</u> are applied to the device in order to disturb the electron resonant trajectories.

In this chapter, we explore the multipactor mitigation when an axial DC magnetic field is applied to a coaxial transmission line

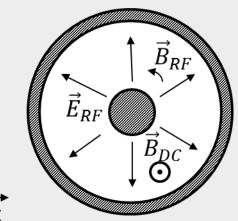
$$\vec{E}_{RF}(\vec{r},t) = \frac{V_0}{r \ln\left(\frac{b}{a}\right)} \cos(2\pi f t - \beta z)\hat{r}$$

 $\vec{B}_{DC}(\vec{r},t) = B_{DC}\hat{z}$

$$\vec{B}_{RF}(\vec{r},t) = \frac{V_0}{r c \ln\left(\frac{b}{a}\right)} \cos(2\pi f t - \beta z)\hat{\varphi}$$

f is the RF frequency (r, φ, z) are the cylindric coordinates β is the propagation factor

a and b are the inner and outer coaxial radii c is the speed of light in vacuum V_0 is the RF voltage amplitude



Transversal cross section of a coaxial line

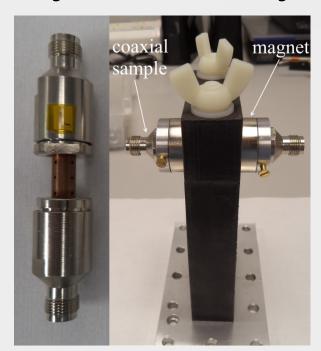
IV. Results

Magnetic field implementation

We consider two different posibilities:

Solenoid: uniform DC magnetic field

Permanent magnet: non-uniform DC magnetic field



Solenoid: uniform DC magnetic field

A solenoid was designed and manufactured to provide an uniform axial DC magnetic field along the coaxial sample when it is fed by a DC electric current

Solenoid

Support: Aluminium hollow cylinder

Inner radius $r_i = 15.80 \text{ mm}$

Outer radius $r_e = 19.05 \text{ mm}$

Length $h = 300 \,\mathrm{mm}$

Winding: copper wire

Wire diameter $\emptyset = 0.8 \text{ mm}$

22 turn layers

Aprox. 375 turns/layer

Total turns = 8250

Inner conductor radius \rightarrow a = 1.515 mm

Outer conductor radius \rightarrow b = 3.490 mm

Gap \rightarrow d = b-a = 1.975 mm

Impedance \rightarrow Z = 50 Ω

Material → Copper

 $W_1 = 25 \, eV$

 $W_{max} = 175 \text{ eV}$

 δ_{max} = 2.25

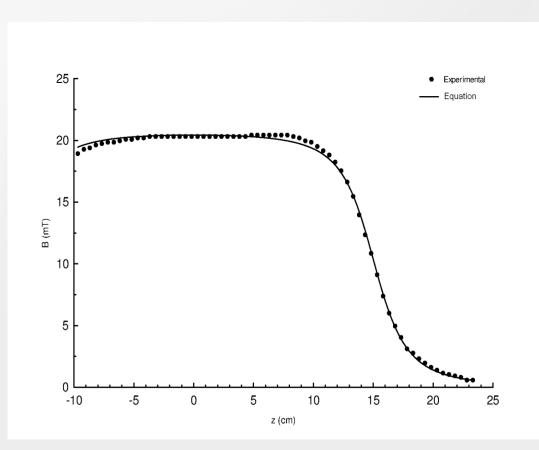
Solenoid: uniform DC magnetic field (II)

Solenoid calibration set-up based on the electromagnetic induction phenomenon



Solenoid: uniform DC magnetic field (III)

Results of the solenoid calibration



Fit of the experimental data

$$B_{z}(0,0,z) = \frac{\mu_{0}}{2} \frac{N \cdot I}{h} \left\{ \frac{z + \frac{h}{2}}{\left[a^{2} + \left(z + \frac{h}{2}\right)^{2}\right]^{\frac{1}{2}}} - \frac{z - \frac{h}{2}}{\left[a^{2} + \left(z - \frac{h}{2}\right)^{2}\right]^{\frac{1}{2}}} \right\}$$

I: DC current feeding the solenoid

z: axial coordinate in the axis

a: mean radius = 29.3 mm

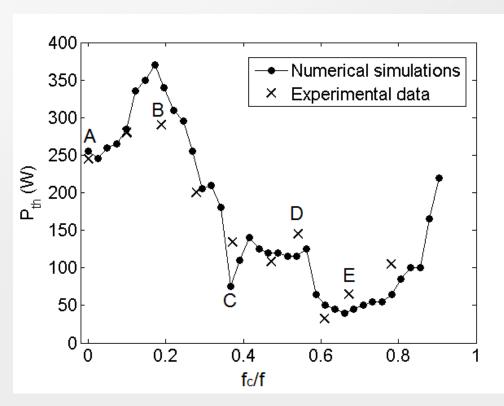
h: length = 300 mm

N: number of turns = 8250

In the center of the solenoid a DC magnetic field of 3.8 mT for I=100 mA is detected.

Solenoid: uniform DC magnetic field (IV)

Multipactor RF power threshold as a function of the cyclotron to RF frequency ratio



cyclotron frequency
$$f_c = \frac{e}{m_e} \frac{B_{DC}}{2\pi}$$

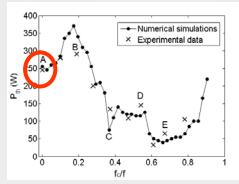
RF frequency \rightarrow 1.145 GHz

- Good agreement between theoretical and experimental data.
- ➤ Within a certain range of f_c/f, the multipactor RF voltage threshold drops below the without magnetic field case.
- Experimentally no discharge was detected for $f_c/f > 0.8$. Theoretical simulations predict no multipactor above $f_c/f > 0.9$
- Small differences can be related to inaccuracies in the SEY data used in theoretical simulations.

Solenoid: uniform DC magnetic field (V)

Point A

$$f_c/f = 0$$
 $P = 245 \text{ W}$



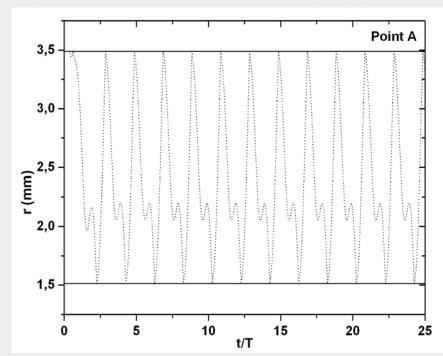
Double surface multipactor

From outer to inner conductor → Order 3

From inner to outer conductor → Order 1

Inner conductor mean SEY value \rightarrow $SEY_i = 2.0$

Outer conductor mean SEY value $\rightarrow SEY_o = 1.1$



Solenoid: uniform DC magnetic field (VI)

Point B

$$f_c/f = 0.197$$
 $P = 290 \text{ W}$

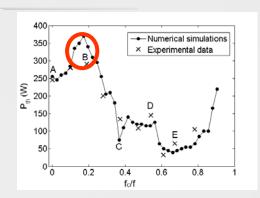
Mix between double surface and single surface multipactor:

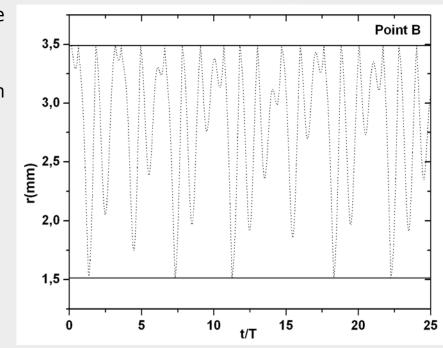
the DC magnetic field tends to bend the electron orbits around the magnetic field flux lines.

Multipactor threshold is higher than for point A!

Inner conductor mean SEY value \rightarrow $SEY_i = 2.9$

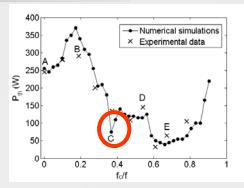
Outer conductor mean SEY value \rightarrow $SEY_o = 2.9$





Solenoid: uniform DC magnetic field (VII)

Point C
$$f_c/f = 0.367$$
 $P = 86$ W



The DC magnetic field is strong enough to avoid electrons reaching the opposite conductor so that there are only single-surface orbits.

• Electrons launched from the inner conductor:

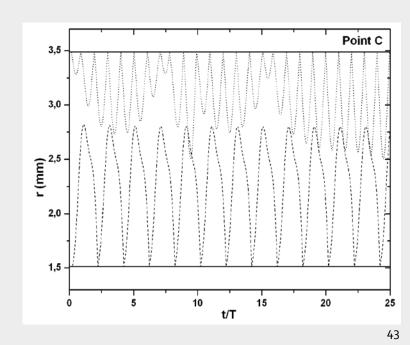
Discharge is generated only on the inner wall. Multipactor of order 4.

• Electrons launched from the outer conductor:

Low energetic impacts, there is no release of secondary electrons.

Inner conductor mean SEY value \rightarrow $SEY_i = 1.2$

Outer conductor mean SEY value $\Rightarrow SEY_o = 0.5$



Solenoid: uniform DC magnetic field (VIII)

Point D $f_c/f = 0.538$ P = 145 W

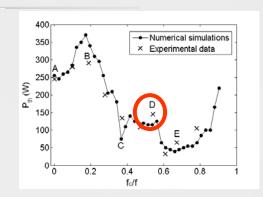
<u>Electrons launched from the inner conductor</u>:

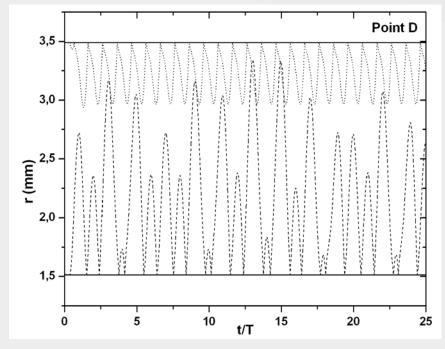
Multipactor cannot occur on the inner wall because of a lack of resonance and low energetic impacts.

• Electrons launched from the outer conductor:

A single-surface discharge of order 2 can be generated. Significant local increase in the threshold of point D is explained in terms of the variation with the radial coordinate of the applied RF electric field.

Inner conductor mean SEY value \Rightarrow $SEY_i = 0.4$ Outer conductor mean SEY value \Rightarrow $SEY_o = 1.1$





Solenoid: uniform DC magnetic field (IX)

Point E

$$f_c/f = 0.660$$
 $P = 65$ W

Electrons launched from the inner conductor:

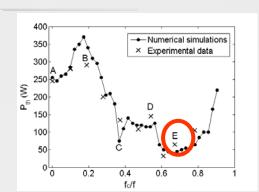
Single-surface discharge of order 2 on inner wall, local decrease in the threshold of point E is explained in terms of the variation with the radial coordinate of the applied RF electric field.

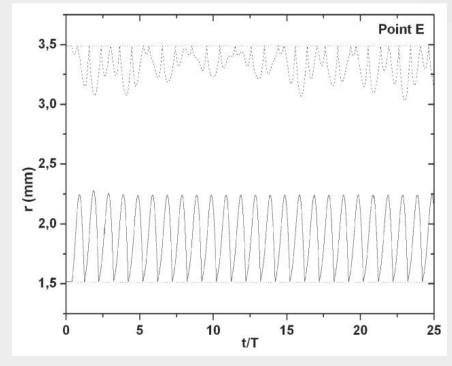
• Electrons launched from the outer conductor:

Multipactor cannot occur on the inner wall because of a lack of resonance and low energetic impacts.

Inner conductor mean SEY value \rightarrow SEY_i = 2.2

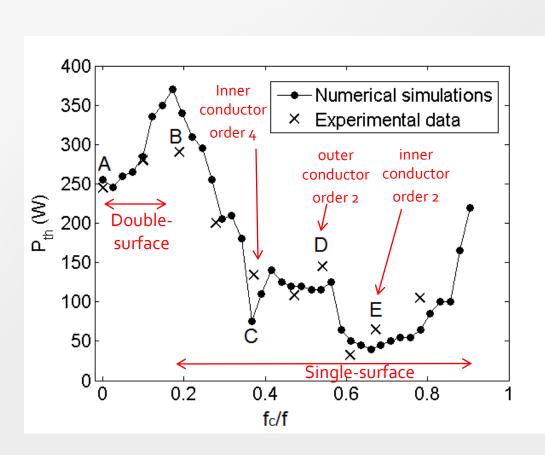
Outer conductor mean SEY value $\rightarrow (SEY_o = 0.9)$





Solenoid: uniform DC magnetic field (X)

Why for high external magnetic fields does the multipactor disappear?

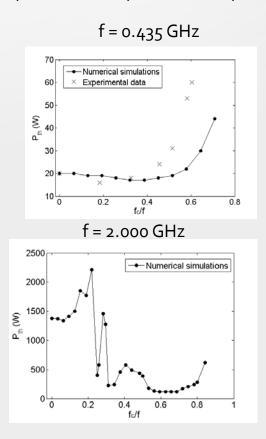


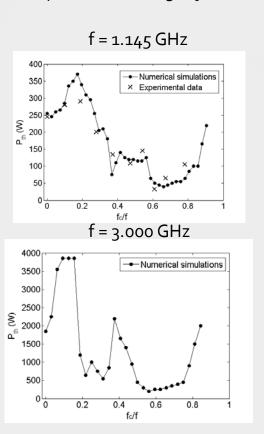
- As the magnetic field increases it bends the electron orbits forcing single-surface multipactor regimes.
- The increase of the magnetic field also implies that the electron time of flight between successive impacts becomes shorter as a consequence of the orbit bending.
- Single-surface multipactor orders must be an even number (m = 2,4,6...) to ensure the resonance with the RF electric field.
- The impossibility of single-surface multipactor orders below 2 and the reduction of the time of flight of the electron due to the magnetic field justifies the mitigation of the multipactor for high magnetic fields.

Solenoid: uniform DC magnetic field (XI)

Can be multipactor mitigated at any RF frequency?

Theoretical results for other RF frequencies predict multipactor mitigation when f_c/f increases above a threshold which depends on the specific RF frequency but it is approximately within the range $f_c/f \in [0.7, 1]$





Permanent magnet: non-uniform DC magnetic field

- A hollow cylindrical neodymium permanent magnet was employed to generate a non-uniform magnetic field over the coaxial sample.
- Expressions for the magnetic field generated by a permanent magnet are derived from the equivalent volume and surface currents. These expressions are required for the multipactor numerical simulations.

Volume magnetization
$$\vec{M} = M\hat{z}$$

$$\vec{K}_M = \vec{M} \times \vec{n}$$
 Equivalent surface current
$$\vec{K}_M = \vec{M} \times \vec{n}$$

$$k_1 = \sqrt{\frac{4rr_0}{(r+r_0)^2 + \left(z - h/_2\right)^2}}$$
 Equivalent volume current
$$\vec{J}_M = \vec{V} \times \vec{M}$$

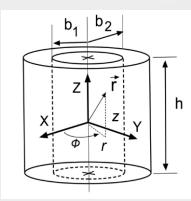
$$k_2 = \sqrt{\frac{4rr_0}{(r+r_0)^2 + \left(z + h/_2\right)^2}}$$
 Elliptical integral of the Second Kind

Elliptical integral of the First Kind

$$B_r(r,z) = \frac{\mu_0 M}{2\pi\sqrt{rr_0}\left(1 + \frac{r}{r_0}\right)^2} \left[\frac{E(k_2)}{k_2} - \frac{E(k_1)}{k_1} + \frac{1}{k_1^2}\left(1 - \frac{{k_1}^2}{2}\right)K(k_1) - \left(1 - \frac{{k_2}^2}{2}\right)K(k_2)\right]$$

$$B_z(r,z) = \frac{\mu_0 M}{2\pi\sqrt{rr_0}\left(1+\frac{r}{r_0}\right)^2} \left[\left(z+\frac{h}{2}\right) k_2 \Pi(k_2,\sigma) - \left(z-\frac{h}{2}\right) k_1 \Pi(k_1,\sigma) \right] - \frac{r}{r_0} B_r(r,z)$$

Elliptical integral of the Third Kind



Scheme of the hollow magnet with height h, and b_1 and b_2 radii.

$$M = 1.153 \times 10^6 \text{ A/m}$$

 $b_1 = 12.5 \text{ mm}$
 $b_2 = 16.5 \text{ mm}$
 $h = 44 \text{ mm}$

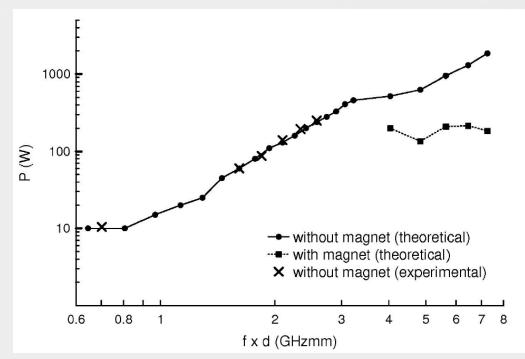
Permanent magnet: non-uniform DC magnetic field (II)

Multipactor simulations and an experimental test campaign was carried out to assess the multipactor mitigation capabilities of the magnet prototype

- According to the simulations, multipactor is inhibited below 4.030 GHzmm, which corresponds to f_c/f = 1.12
- Firstly, it was explored the multipactor threshold without magnet, finding good agreement between theory and experiment.
- Secondly, the same frequency gap values were measured with the coaxial immersed in the hollow magnet. No discharge was found for any of these cases, in concordance with the theoretical predictions.
- Magnet mitigation behavior is quite similar to the solenoid case (the empirical condition of mitigation for values above the range f_c/f∈[0.7, 1] is roughly fulfilled)

Inner conductor radius \Rightarrow a = 1.238 mm Outer conductor radius \Rightarrow b = 2.850 mm Gap \Rightarrow d = b-a = 1.612 mm Impedance \Rightarrow Z = 50 Ω

Material \rightarrow Copper $W_1 = 19.5 \text{ eV}$ $W_{\text{max}} = 219.7 \text{ eV}$ $\delta_{\text{max}} = 2.61$



Permanent magnet: non-uniform DC magnetic field (III)

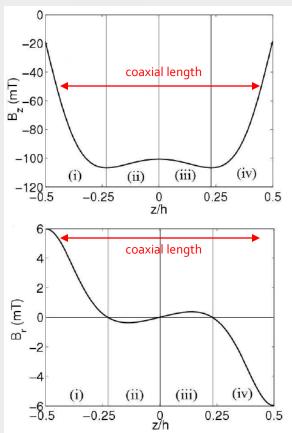
In order to understand the multipactor physics with the magnet it is examined the magnetic field pattern, the electron motion equations and trajectories

Differential equations of motion

$$\begin{split} \frac{dv_r}{dt} &= -\frac{e}{m_e} \left[E_{RF}(\vec{r}, t) + E_{SC}(\vec{r}, t) - B_{RF}(\vec{r}, t) v_z + B_{ext,z}(\vec{r}) v_\phi \right] \\ \frac{dv_\phi}{dt} &= -\frac{e}{m_e} \left[-B_{ext,z}(\vec{r}) v_r + B_{ext,r}(\vec{r}) v_z \right] \\ \frac{dv_z}{dt} &= -\frac{e}{m_e} \left[-B_{ext,r}(\vec{r}) v_\phi + B_{RF}(\vec{r}, t) v_r \right] \end{split}$$

With the assumptions $B_{ext,r} \ll B_{ext,z}$, $B_{RF} \ll B_{ext}$, $E_{sc} \approx 0$ The previous equations can be approximated in the following way

$$\begin{split} \frac{dv_r}{dt} &\approx -\frac{e}{m_e} \big[E_{RF}(\vec{r},t) + B_{ext,z}(\vec{r}) v_\phi \big] \\ \frac{dv_\phi}{dt} &\approx \frac{e}{m_e} B_{ext,z}(\vec{r}) v_r \\ \frac{dv_z}{dt} &\approx \frac{e}{m_e} B_{ext,r}(\vec{r}) v_\phi \end{split}$$

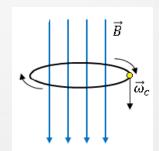


h is the magnet height

Permanent magnet: non-uniform DC magnetic field (IV)

An electron immersed in a DC magnetic field tends to spin around the magnetic field flux lines [1]:

$$\vec{\omega}_c = \frac{e}{m_e} \vec{B}$$



For an axial DC magnetic field oriented along -z, the electron will spin clockwise $\rightarrow v_{\phi} < 0$

[1] R. K. Wangsness, Electromagnetic Fields, 2nd ed. New York, NY, USA: Wiley, 1986.

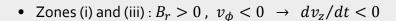
Despite in our case there is a radial RF electric field, we can still assume the electron will spin

clockwise:

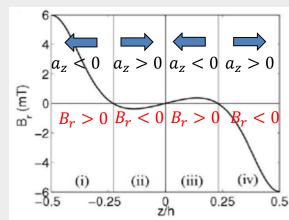
The axial acceleration is given by

$$\frac{dv_z}{dt} \approx \frac{e}{m_e} B_{ext,r}(\vec{r}) v_{\phi}$$

There are four different zones according to sign of B_{ext,r}



• Zones (ii) and (iv) :
$$B_r < 0$$
 , $\ v_{\phi} < 0 \ \rightarrow \ dv_z/dt > 0$



Electrons in zones (i) and (iv) are pushed out the coaxial and cannot contribute to the multipactor process

Conclusions

- It has been demonstrated the capability of using an uniform axial DC magnetic field for inhibiting the multipactor discharge in a coaxial transmission line.
- Multipactor discharge can be suppressed at any RF frequency provided a strong enough axial DC magnetic field is applied.
- As a rule of thumb the minimum magnetic field for ensure mitigation must fulfill that $f_c/f \in [0.7, 1]$
- Besides, it has been found that the non uniform axial magnetic field generated by means of a neodimium permanent magnet can also suppress the discharge.
- For the hollow magnet prototype analyzed the multipactor mitigation behavior is very similar to the uniform axial magnetic field case and the aforementioned rule of thumb $(f_c/f \in [0.7, 1])$ can still be applied.

Publications

[1] D. González-Iglesias, A. M. Pérez, S. Anza, J. Vague, B. Gimeno, V. E. Boria, D. Raboso, C. Vicente, J. Gil, F. Caspers, L. Conde, "Multipactor in a coaxial line under the presence of an axial DC magnetic field", *IEEE Electron Device Letters*, vol. 33, no. 5, pp. 727-729, May 2012.

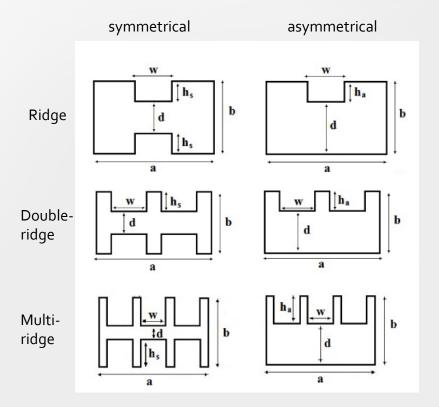
[2] D. González-Iglesias, A. M. Pérez, S. Anza, J. Vague, B. Gimeno, V. E. Boria, D. Raboso, C. Vicente, J. Gil, F. Caspers, L. Conde, "Multipactor mitigation in coaxial lines by means of permanent magnets", *IEEE Transactions on Electron Devices*, vol. 61, no. 12, pp. 4224-4231, Dec. 2014.

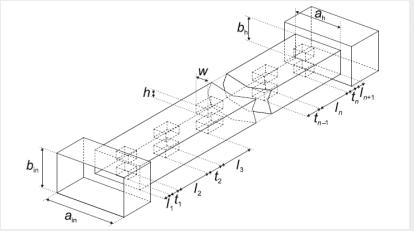
Multipactor in ridge waveguides

Ridge waveguides

Ridge and multi-ridge waveguide sections are widely employed for constructing band-pass and low-pass filters devoted to space telecommunication applications. In this section:

- Multipactor susceptibility charts will be computed for several typical ridge waveguide topologies
- A simple method for multipactor prediction in structures containing ridge waveguide sections will be presented





Symmetrical evanescent mode ridge waveguide filter topology

a is the waveguide width b is the waveguide height d is the gap between ridges or ridge and waveguide w is the ridge width b is the ridge height

Multipactor susceptibility charts

Several multipactor susceptibility charts have been computed by means of the commercial software FEST₃D [1] for a wide range of cases of practical interest.

RF electric field pattern in ridge waveguides

The standard WR-75 rectangular waveguide has been taken as the housing dimensions for the ridge waveguides.

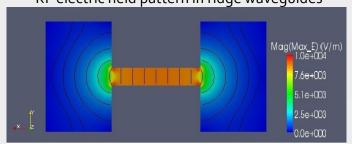
The ridge waveguides are assumed to be silver-plated with the following SEY parameters W_1 = 30 eV, W_{max} = 165 eV, δ_{max} = 2.22

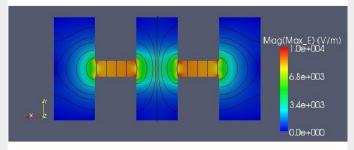
Equivalent voltage for susceptibility charts is computed integrating the RF electric field along the ridge gap:

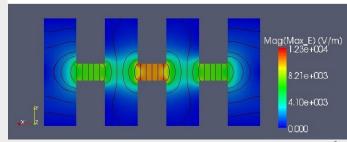
$$V_{eq} = \left| \int_{0}^{d} \vec{E} \cdot \vec{dl} \right|$$

 \overrightarrow{dl} differential element parallel to the gap direction

[1] FEST3D, www.fest3d.com







Multipactor susceptibility charts (II)

Study of the variation of multipactor voltage threshold with the ridge width (in all cases the gap is d =

0.5 mm):

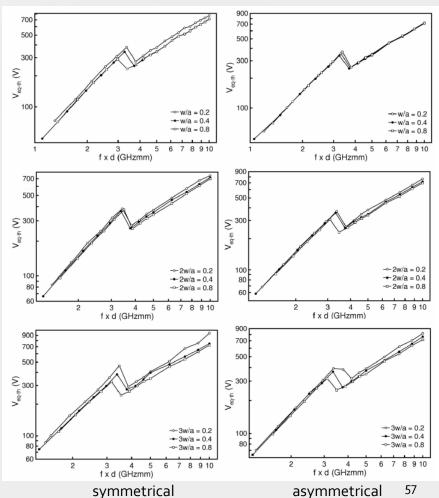
ridge

 It is observed that the narrower the ridge the higher the multipactor threshold, but only slight variations are noticed

> Doubleridge

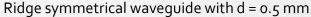
 This phenomenon is due to that low values of w/a allow electrons escaping from the gap region so an extra voltage is needed to compensate these electron losses

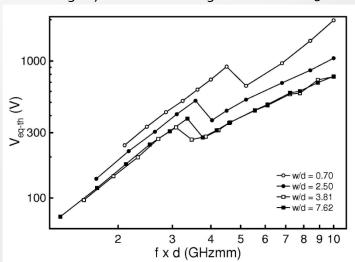
> Multiridge



Multipactor susceptibility charts (III)

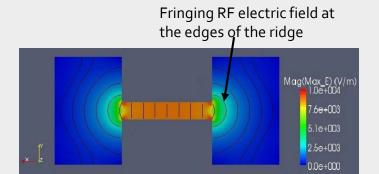
The phenomenon of electrons escaping from the gap zone was already reported in [1] and [2], and becomes more important when the ridge width is similar or below the gap length.





Electrons leave the gap zone due to two different mechanisms:

- > Fringing RF electric field effect
- ➤ Random drift due to the component transverse to the gap of the initial velocity of the secondary electrons



- [1] D. Wolk, C. Vicente, H.L. Hartnagel, M. Mattes, J.R. Mosig, D. Raboso, "An investigation on the effect of fringing fields on multipactor breakdown", 5th International Workshop on Multipactor, Corona and Passive Intermodulation, Sept. 2005.
- [2] V. E. Semenov, E. Rakova, R. Udiljak, D. Anderson, M. Lisak, and J. Puech, "Conformal mapping analysis of multipactor breakdown in waveguide irises", *Physics of Plasmas*, vol. 15, 033501, 2008.

Multipactor susceptibility charts (IV)

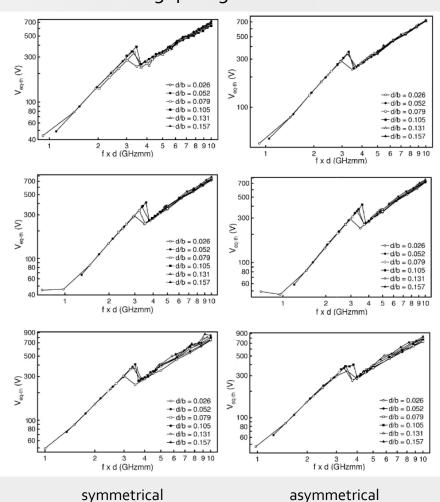
Study of the variation of multipactor voltage threshold with the gap length:

Ridge w/a = 0.4

Double-ridge 2w/a = 0.4

 Very little variations of the multipactor threshold are observed within the gap range explored

Multi-ridge 3w/a = 0.4



Multipactor prediction using susceptibility charts

The following method allows predicting the multpactor threshold in devices containing ridge waveguide sections by using the previous susceptibility charts:

- It is required the computation of the RF electromagnetic field pattern of the whole structure (for example, using FEST₃D).
- 2. The equivalent voltage is calculated by integrating the RF electric field for each of the ridge waveguide sections.
- 3. The highest equivalent voltage V'_{eq} is selected, the multipactor discharge will appear first at that ridge section.
- 4. In the multipactor susceptibility charts it is searched the case (frequency gap product, waveguide and ridge dimensions) that most fits with the aforementioned ridge section, and the multipactor voltage threshold is obtained V_{eq-th}
- 5. Multipactor power threshold at the input port of the device can be obtained with the following expression:

$$P_{th} = \left| \frac{V_{eq-th}}{V'_{eq}} \right|^2 P_{in}$$

Multipactor prediction using susceptibility charts (II)

Example I: Evanescent mode filter [1]

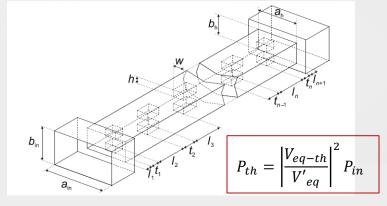
- Input and output port implemented in a WR-137 waveguide (b_{in} = 34.85 mm , a_{in} = 15.80 mm)
- RF frequency, f = 9.78 GHz
- Frequency gap, f x d = 3.08 GHzmm
- The most similar case in the susceptibility charts is the curve for w/a = 0.4, d/b = 0.026, with a threshold of $V_{eq-th} = 310 \text{ V}$

Summary of the multipactor analysis

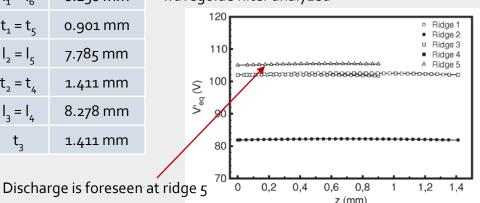
Ridge	V' _{eq} (V)	P _{pred} (W)	P _{FEST3D} (W)
5	105.4	8.65	9.09

Filter dimensions

a _h	6.790 mm	
b_h	5.275 mm	
W	3.050 mm	
h	2.480 mm	
d	0.315 mm	
$I_1 = I_6$	0.250 mm	
$t_1 = t_5$	0.901 mm	
$ _{2} = _{5}$	7.785 mm	
t ₂ = t ₄	1.411 mm	
$l_3 = l_4$	8.278 mm	
t ₃	1.411 mm	



Scheme of the symmetrical evanescent mode ridge wavequide filter analyzed



Equivalent voltage over the gap for 1 W of input power

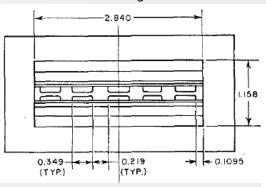
[1] P. Soto et al., "Performance analysis and comparison of symmetrical and asymmetrical configurations of evanescent mode ridge waveguide filters", Radio Science, vol. 44, RS6010, doi:10.1029/2008RS004034, 2009.

Multipactor prediction using susceptibility charts (III)

Example II: High-power S-band filter [1]

- Input and output port implemented in a waveguide with $b_{in} = 6.4516$ mm, $a_{in} = 72.1360$ mm)
- RF frequency, f = 2.78 GHz
- Frequency gap, f x d = 6.71 GHzmm
- The filter is made of copper, $W_1 = 35$ eV, $\delta_{max} = 2.3$, $W_{max} = 165$ eV
- From the susceptibility chart is the threshold is $V_{eq-th} = 530 \text{ V}$

Scheme of the five-ridge symmetrical waveguide

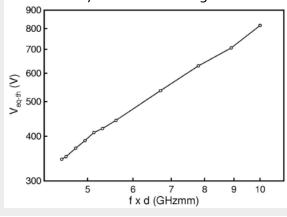


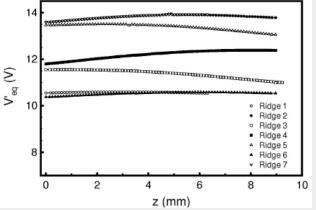
$$P_{th} = \left| \frac{V_{eq-th}}{V'_{eq}} \right|^2 P_{in}$$

Summary of the multipactor analysis

Ridge	V' _{eq} (V)	P _{pred} (W)	P _{FEST3D} (W)
7	13.921	1449	1532

Multipactor char for five-ridge symmetrical waveguide





Equivalent voltage over the gap for 1 W of input power

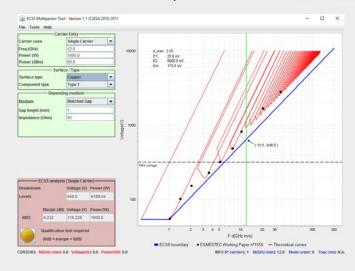
Multipactor prediction using susceptibility charts (IV)

Comparison between the multipactor the results predicted with the susceptibility charts for ridge waveguides and those from ECSS Multipactor Tool for parallel-plate waveguides

Component	P _{charts} (W)	P _{ECSS} (W)	Difference (dB)
Evanescent mode filter	8.65	3.44	4.0
High-power S- band filter	1449	676	3.3

- It is found that the results extracted from the parallel-plate waveguide approximation is rather conservative when applied to geometries that differ from such ideal case
- Significant increases of 4.0 and 3.3 dB in the power handling capabilities for the above filters arise when considering the ridge multipactor susceptibility charts

View of the ECSS Multipactor Tool version 1.1



Conclusions

- Multipactor susceptibility charts have been computed for several ridge and multi-ridge waveguides.
- An approximate method based on the susceptibility charts is presented for predicting the multipactor voltage threshold in devices containing ridge and multi-ridge waveguides sections.
- The results of such approximate method are applied to a evanescent mode filter and a high power S-band filter finding good agreement when comparing with results from numerical simulations.
- Using the ridge and multi-ridge susceptibility charts allows to increase RF power handling capability of the device with regard to the use of the ECSS susceptibility charts for parallel-plate waveguides.

Publications

[1] D. González-Iglesias, P. Soto, S. Anza, B. Gimeno, V. E. Boria, C. Vicente, J. Gil, "Multipactor susceptibility charts for ridge and multiridge waveguides", *IEEE Transactions on Electron Devices*, vol. 59, no. 12, pp. 3601-3607, Dec. 2012.

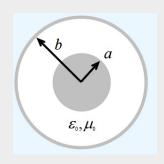
Multipactor with digitally modulated signals

Most of the multipactor studies consider single-carrier harmonic signals whereas realistic signals employed in space telecommunications are multi-carrier and digitally modulated.

In this section, it is analyzed the multipactor RF voltage threshold in a coaxial transmission line excited by a single-carrier digital modulated signal

To reach this aim the following points are considered:

- 1. Theory of digital modulated signals
- 2. Multipactor simulations with the effective electron code (basic modulation scenarios)
- 3. Analysis of multipactor with RF pulsed signals
- 4. Coarse method for multipactor prediction with arbitrary digital modulated signals
- 5. Multipactor simulations with the individual electron code (complex modulation scenarios)



Cross section of a coaxial line

Theory of digital modulations

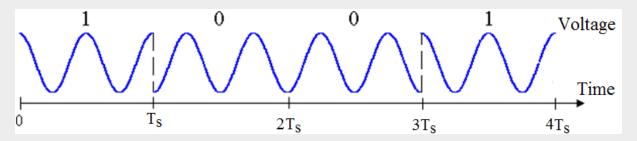
A digital modulated signal allows to transmit a bit sequence encoded as a certain combination of symbols of the modulation scheme.

Each symbol has a predefined duration in the transmitted signal denoted by T_s , typically this value is given in terms of the ξ factor, which is the ratio between the symbol duration and the RF carrier period

There are many ways to modulate digitally a carrier signal:

- $\xi = \frac{1}{T}$
- The phase of the RF carrier signal can be switched among a certain number of values between different symbols, e.g. phase-shift keying (PSK)
- ➤ Both the phase and amplitude of the RF carrier can be varied between symbols, e. g. : quadrature amplitude modulation (QAM) or amplitude and phase-shift keying (APSK).

$$V(t) = V_0 \cos(2\pi f t + \theta_n(t))$$



$$\theta_n = \pi$$
 if the bit is "o"

$$\theta_n = 0$$
 if the bit is "1"

Theory of digital modulations (II)

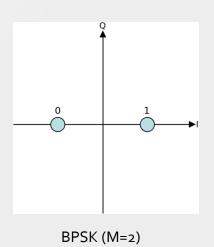
Any arbitrary digital modulated signal can be expressed as:

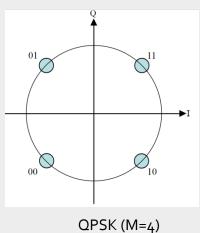
$$V(t) = V_0 A(t) \cos(2\pi f t + \theta(t))$$

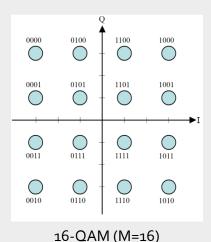
A(t) and θ (t) are the symbol amplitude and phase, respectively, which change from symbol to symbol

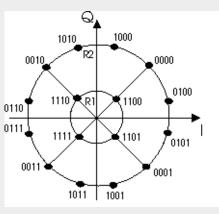
Alternatively, any arbitrary digital modulated signal can be expressed in terms of the I/Q data in the following form:

$$V(t) = V_0[I(t)\cos(2\pi f t) - Q(t)\sin(2\pi f t)]$$









16-APSK (M=16)

69

Theory of digital modulations (III)

After the modulation of the RF carrier, in order to smooth transitions between symbols, a filtering process is applied to the signal. A typical choice is the use of the Root Raised Cosine filter (RRC).

$$\operatorname{RRC \, filter} \qquad g_{rrc}(t) = \frac{4\Gamma}{\pi\sqrt{T_s}} \frac{\cos\left(\frac{(1+\Gamma)\pi t}{T_s}\right) + \frac{1}{\frac{4\Gamma t}{T_s}}\sin\left(\frac{(1-\Gamma)\pi t}{T_s}\right)}{1-\left(\frac{4\Gamma t}{T_s}\right)^2}$$

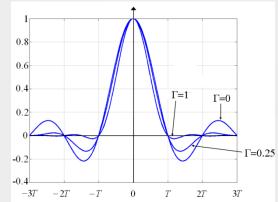
Roll-off factor $0 \le \Gamma \le 1$

The digital modulated signal after filtering process is given by

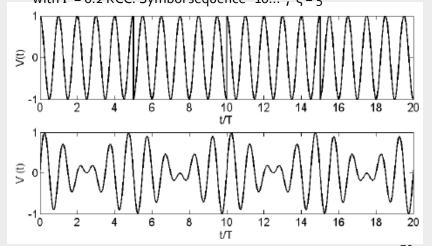
$$V(t) = V_0 \sum_{n=-\infty}^{+\infty} g(t - nT_s) A_n \cos(2\pi f t + \theta_n)$$

Hence, the final shape of the digital modulated signal depends mainly on:

- \triangleright The ξ factor
- > The transmitted symbol sequence
- The filter type



Example: BPSK signal before (above) and after (below) a filtering with Γ = 0.2 RCC. Symbol sequence "10...", ξ = 5



Multipactor simulations with the effective electron code

BPSK without filtering: It is shown the multipactor RF voltage threshold normalized to the multipactor threshold of the unmodulated (harmonic) signal

- ✓ Transmitted bit sequence "10..."
- ✓ No filtering: the phase varies 180° at the symbol transition (T₅)

It is observed that:

- \blacktriangleright Modulation affects the multipactor voltage threshold, specially for ξ < 30
- ➤ Different behaviors depending on the f x d value: with low f x d normalized threshold raises up, with medium-high f x d normalized threshold diminishes

$$\xi = \frac{T_s}{T} \longrightarrow \text{Time symbol}$$

$$\longrightarrow \text{RF carrier period}$$

Inner conductor radius \Rightarrow a = 1.515 mm Outer conductor radius \Rightarrow b = 3.490 mm Gap \Rightarrow d = b-a = 1.975 mm Impedance \Rightarrow Z = 50 Ω Material \rightarrow Copper $W_1 = 25 \text{ eV}$ $W_{\text{max}} = 175 \text{ eV}$ $\delta_{\text{max}} = 2.25$



Multipactor simulations with the effective electron code (II)

<u>BPSK without filtering</u>: The electron trajectories are analyzed at several points of the multipactor curve.

Point A

f x d = 1 GHzmm

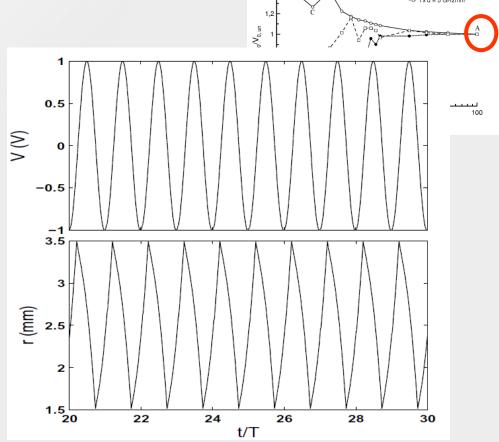
$$\xi = 100$$

- Scenario very close to the unmodulated sone (100 RF periods between successive phase shifts)
- ➤ Electron flight time between conductors:

From outer to inner \rightarrow 0.5 T

From inner to outer \rightarrow 0.5 T

Multipactor order \rightarrow 1



Multipactor simulations with the effective electron code (III)

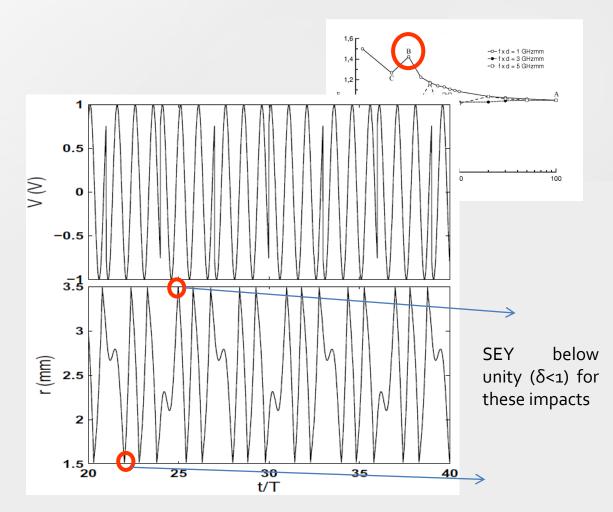
BPSK without filtering

Point B

f x d = 1 GHzmm

$$\xi = 3$$

- ➤ Effective electron trajectory periodic with period equal to 2Ts
- Complex trajectory: 10 impacts before repeating the sequence
- Flight time (in terms of T): 0.47 , 1.23, 0.36, 0.45, 0.46, 0.53, 1.18, 0.44, 0.38 y 0.5 → No estable multipactor order



Multipactor simulations with the effective electron code (IV)

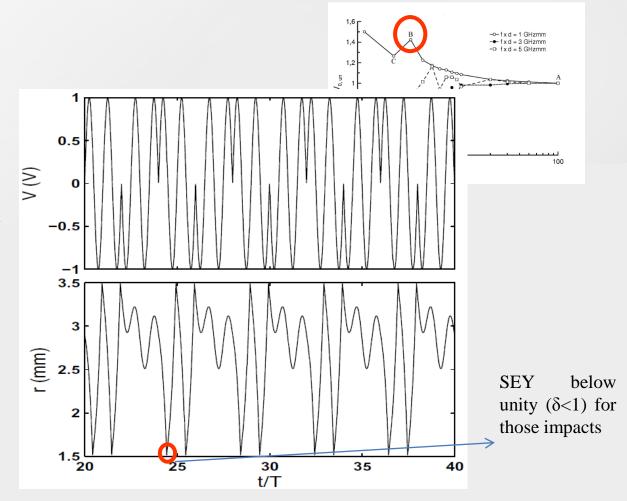
BPSK without filtering

Point C

$$f x d = 1 GHzmm$$

 $\xi = 2$

- Effective electron trajectory periodic with period equal to 2Ts
- Trajectory more simple that in point C: 4 impacts before repeating sequence
- Flight time (in terms of T): 0.5, 0.5, 0.47 y 2.53



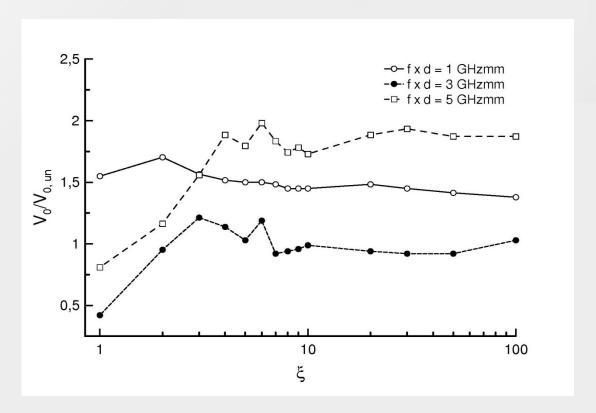
Multipactor simulations with the effective electron code (V)

BPSK with RRC filter: It is shown the multipactor RF voltage threshold normalized to the multipactor threshold of the unmodulated (harmonic) signal

- ✓ RRC filter, $\Gamma = 0.25$
- ✓ Transmitted bit sequence "101010..."

It is observed that:

- Point Different behavior with respect to the without filter case: the curves for different f x d values do not converge at $\xi = 100$
- For low f x d normalized threshold raises up as ξ diminishes, whilst with medium-high f x d the normalized threshold diminishes as ξ does



Multipactor simulations with the effective electron code (VI)

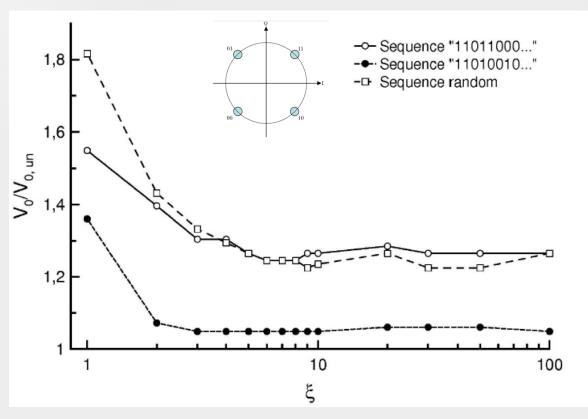
<u>OPSK with RRC filter</u>: It is shown the multipactor RF voltage threshold normalized to the multipactor threshold of the unmodulated (harmonic) signal

- ✓ RRC filter, $\Gamma = 0.25$
- \checkmark fxd=1GHzmm
- ✓ Sequence "11011000...": phase shifts of 90°,180°,90°,180°...
- ✓ Sequence "11010010...": phase shifts of 90° between successive symbols

Seq. "11011000"

Seq. "11010010"

> 0
10
50
100
150
200
250
300



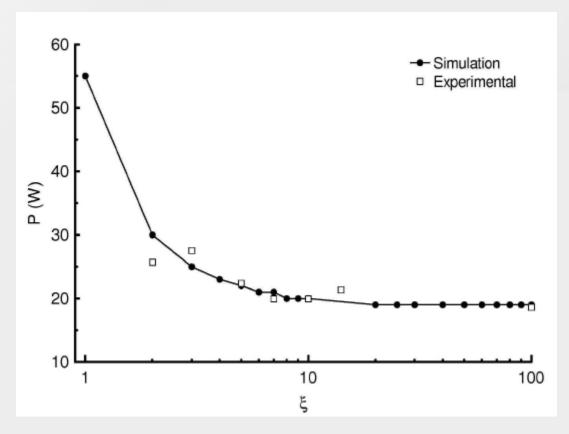
Multipactor simulations with the effective electron code (VII)

<u>Experimental validation</u>. It was carried out a multipactor experiment to validate some of the previous results presented

- ✓ BPSK
- ✓ without filtering
- ✓ f = 435 MHz, $f \times d = 0.859 \text{ GHzmm}$
- ✓ Transmitted bit sequence "10..."

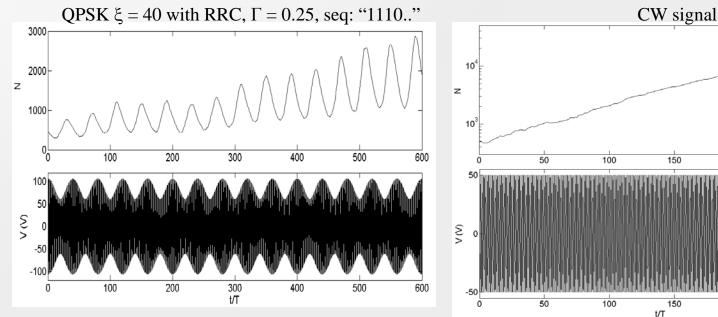
It is observed:

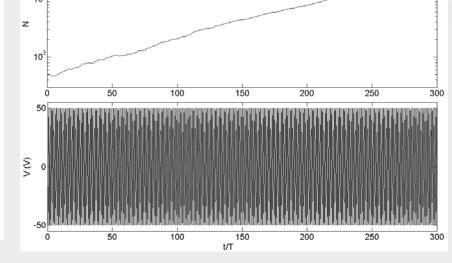
Good agreement between theoretical and experimental data



Analysis of multipactor with RF pulsed signals

The modulated signals analysed in the previous subsection correspond to simple academic cases (most of them were periodic), in such cases the selection of the multipactor discharge criterion is straightforward

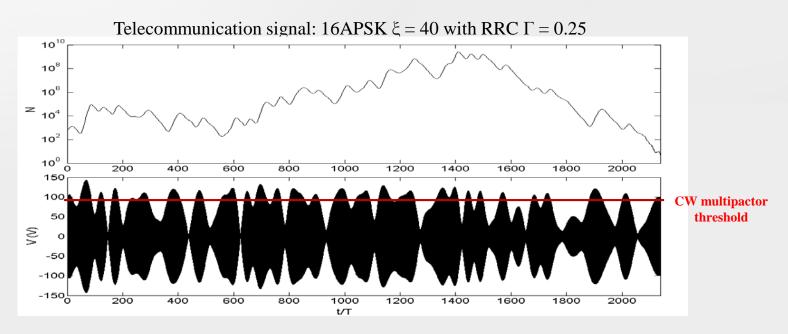




If it is observed an increase of the electron population with time, then the discharge will eventually occur sooner or later

Analysis of multipactor with RF pulsed signals (II)

However, realistic transmitted signals employed in telecommunication systems are far from the simplicity of the previous signals:

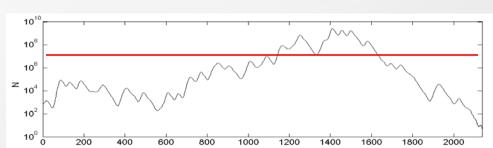


In this latter case, the multipactor criterion to decide if the discharge has been occurred is not evident. One question arises: What is the minimum electron (density) population to trigger the multipactor discharge?

Analysis of multipactor with RF pulsed signals (III)

What is the minimum electron (density) population to trigger the multipactor discharge?

The answer depends on the sensibility of the diagnostic methods implemented in the experimental set-up



Critical discharge level?

Several problems arise:

- ➤ There is no an unequivocal and quantitative definition of multipactor discharge
- There are no experimental data about the electron density (population) during the discharge

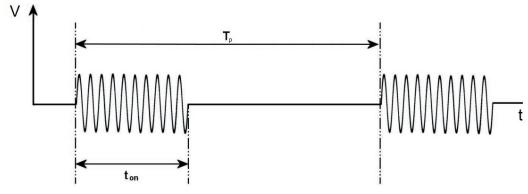
Nulling system

Before discharge

Partial view of a typical multipactor test-bed

Analysis of multipactor with RF pulsed signals (IV)

To overcome these inconveniences, we propose an indirect method to determine the electron density (population) during the discharge based on the study of the multipactor RF voltage threshold in RF pulsed signals.

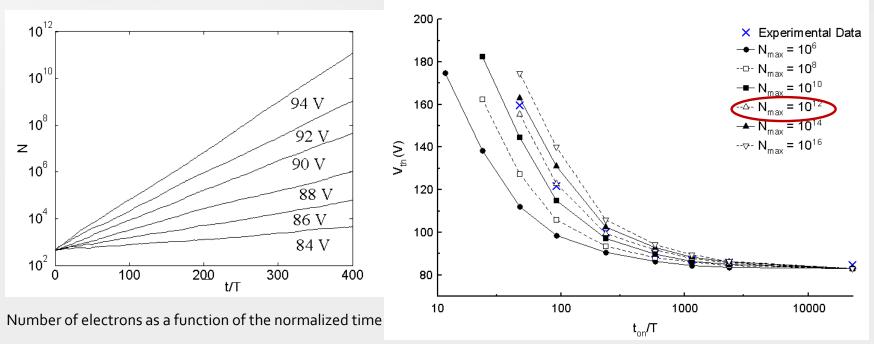


Scheme of a RF pulsed signal

- During the active part of the pulse (t_{on}) the signal is time-harmonic and the electron population will increase whenever the RF voltage amplitude exceeds the CW multipactor RF voltage threshold
- During the inactive part of the pulse the electron population will diminish since electrons are mainly absorbed by the walls
- ➤ If t_{on}<<T_p there will not be electron accumulation from one pulse to next, consequently only the active part of one individual pulse must be analyzed in the multipactor simulations

Analysis of multipactor with RF pulsed signals (V)

- > The evolution of the electron population is obtained by means of the individual electron simulation code
- Assuming different values for the electron population at the discharge level (the multipactor crterion), it is obtained the multipactor RF voltage threshold curves for the RF pulsed signals
- From comparison with experimental measurements it is stated that the best fit is produced for $N_{max} = 10^{12}$
- This fact is in agreement with the theoretical results presented in [1]



[1] E. Sorolla, A. Sounas, M. Mattes, "Space charge effects for multipactor in coaxial lines", *Physics of Plasmas*, vol. 22, 033512 (2015).

m multipactor order

Coarse method for multipactor prediction

The coarse method is a procedure that allows to estimate the multipactor RF voltage threshold for digital modulated signals relying only in numerical simulations for the CW signal at the carrier frequency. Presents the advantage of being much faster than the numerical simulations (hours versus minutes).

This method is based on the electron growth model for parallel-plates with CW signal

 N_0 , electron population at t = 0 $N(t_n)$ electron population after the *n*-th impact δ_{av} , average SEY at the collisions

$$N(t_n) = N_0 e^{\alpha t_n}$$
 (1) $\alpha = \frac{2f}{m} \ln \delta_{av}$ $t_n = n \left(\frac{m}{2f}\right)$

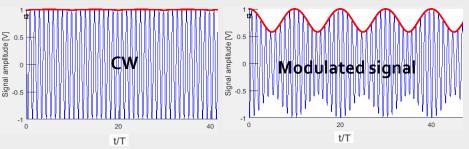
$$t = \frac{2f}{m} \ln \delta_{av}$$
 $t_n =$

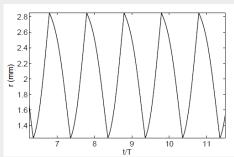
$$t_n = n\left(\frac{m}{2f}\right)$$

Time of the n-th impact

The following assumptions can be made:

- Time can be assumed as a continuous variable since the time required for the ١. onset of the discharge is much greater than the time between successive impacts
- II. Signal envelope varies smoothly over the time interval between successive impacts of the electron (i.e. $\xi >>1$). This implies that the electron trajectories between two successive impacts are little disturbed due to the envelope change.





Electron resonant trajectory with m =1

Coarse method for multipactor prediction (II)

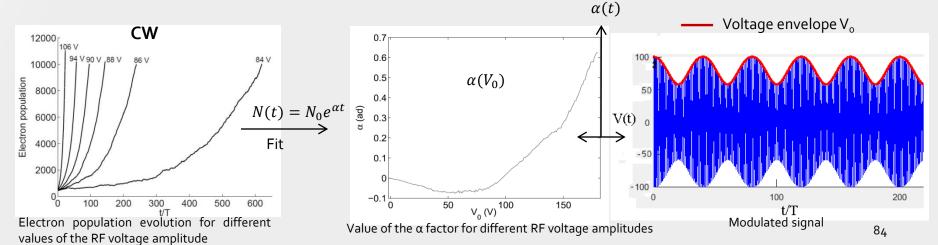
Under assumption I the formula for the electron number with CW signals (1) can be differentiated:

$$N(t) = N_0 e^{\alpha t}$$
 Differentiation $\frac{dN}{N} = \alpha dt$ (2)

• Assumption II implies that (1) and (2) are locally valid for modulated signals, but it has to be taken into account that now the growth factor α varies with time

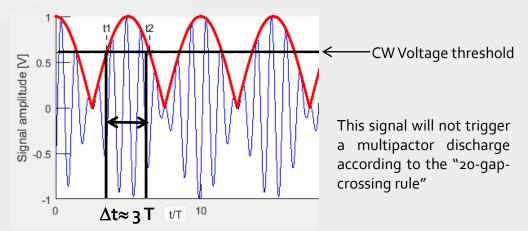
$$\frac{dN}{N} = \alpha(t)dt \quad (3) \quad \xrightarrow{\text{Integration}} \qquad N(t) = N_0 exp\left(\int_0^t \alpha(t)dt\right) \quad (4)$$

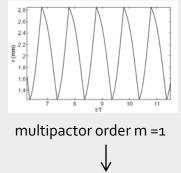
• Expression (4) constitutes the basis of the coarse method since it provides the time evolution of the electron population within the component.



"20-gap-crossing" rule

- Up to now, the standard adopted by the European Space Agency (ESA) for multicarrier multipactor design is based on the "20-gap-crossing" rule [1], which is used as an engineering "rule of thumb" for assessing the risk of multipactor breakdown.
- This rule states that "with a multi-carrier signal, multipactor events will be detectable whenever the power is maintained above the CW threshold for a time period about 20 gap crossings of the electron".





1/2 T in crossing the gap once, 10T in crossing the gap 20 times 1

[1] ECSS Secretariat, "Multipaction design and test," ESA-ESTEC Requirements & Standards Division, Noordwijk, The Netherlands, ESA-ESTEC, Tech. Rep. ECSS-E-20-01A, 2003.

Multipactor simulations with the individual electron code

Theoretical and experimental results are based on the following parameters scenario:

- RF carrier frequency is 1.145 GHz.
- The dimensions and characteristics of the coaxial sample are:

Inner conductor radius
$$\rightarrow$$
 a = 1.238 mm

Gap
$$\rightarrow$$
 d = b-a = 1.612 mm

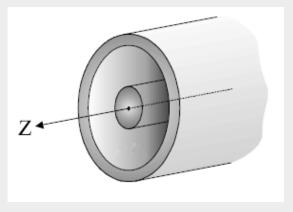
Outer conductor radius
$$\rightarrow$$
 b = 2.850 mm

Impedance
$$\rightarrow$$
 Z = 50 Ω

• The Furman and Pivi SEY parameters for copper are

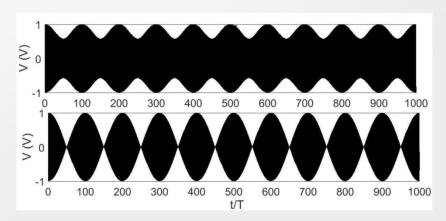
$$s = 1.539$$

 $\delta_m = 1.77$
 $W_m = 277 \text{ eV}$



Multipactor simulations with the individual electron code (II)

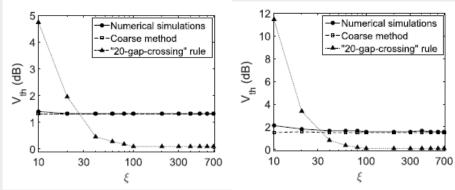
In a first step, we consider QPSK digital modulated signals with simple periodic symbol sequence (Q and X sequences)



Voltage of the RF signals as a function of the time normalized to the RF period. Top: QPSK with Q sequence. Bottom: QPSK with X sequence. In both cases, ξ =100.

The multipactor RF voltage threshold for the modulated signals is expressed in dB

$$V_{th}(dB) = 20 \log \left(\frac{V_{th}}{V_{th,CW}} \right)$$



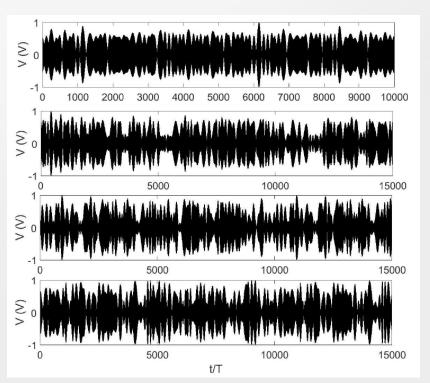
RF multipactor voltage threshold as a function of the ξ factor for Q (left) and X (right) sequences .

- ➤ It is found good agreement between results from numerical simulations and the coarse method.
- Significant discrepancies are found when comparing with the "20-gap-crossing" rule.
- > The numerical simulations and the coarse method predict a slight increase in the multipactor RF voltage threshold for low ξ values.

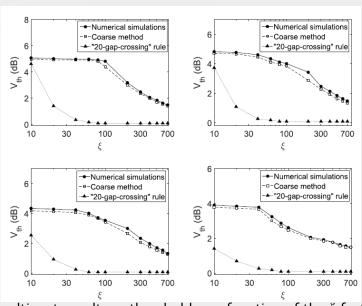
Multipactor simulations with the individual electron code (III)

Next, we consider the case of realistic signal random sequences of symbols for QPSK, 16-APSK, 32-

APSK, and 16-QAM digital modulations



Voltage of the RF signals as a function of the time normalized to the RF period. Top to bottom: QPSK, 32-APSK, 16-APSK, and 16-QAM. In both cases, $\xi = 100$.

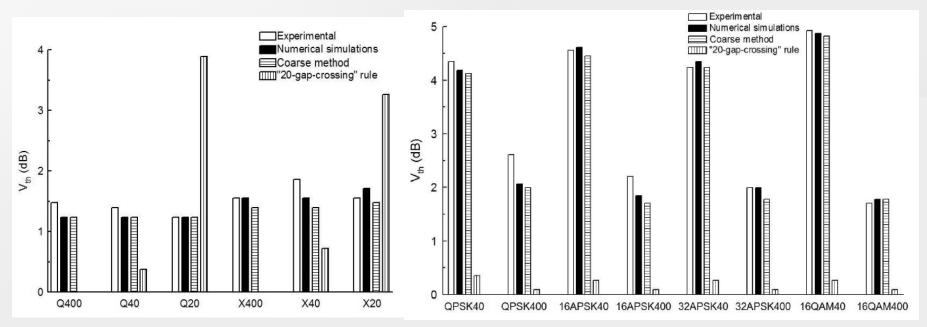


RF multipactor voltage threshold as a function of the ξ factor for the random sequences. From left to right and top to bottom: QPSK, 16-APSK, 32-APSK, and 16-QAM.

- ➤ It is found good agreement between results from numerical simulations and the coarse method but there are significant discrepancies with the "20-gap-crossing" rule.
- \blacktriangleright The numerical simulations and the coarse method predict a an increase in the multipactor RF voltage threshold for low ξ values.

Multipactor simulations with the individual electron code (IV)

Comparison with experimental results



RF multipactor voltage threshold for different digital modulated signals. The number after the modulation indicates the ξ value.

- > It is found good agreement between results from numerical simulations and the coarse method with the experimental data.
- Significant differences between the "20-gap-crossing" rule and the experimental results are found.

Conclusions

- Effect of digital modulated signals in the RF multipactor voltage threshold for a coaxial transmission line has been studied.
- Besides the numerical simulations, a fast coarse method for multipactor prediction with modulated signals is presented.
- Several digital modulation schemes (QPSK, 16-APSK, 32-APSK, 16-QAM) have been considered for different transmitted symbol sequences and different ξ values.
- Theoretical results from the numerical simulations and the coarse method are in agreement with the experimental data.
- Significant discrepancies have been found between the ESA standard "20-gap-crossing" rule and the experimental results

Publications

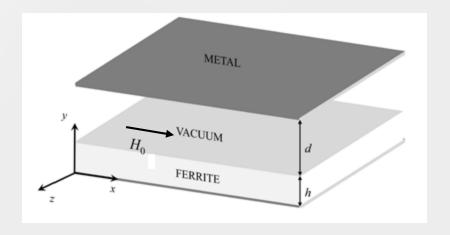
- [1] D. González-Iglesias, M. P. Belloch, Ò. Monerris, B. Gimeno, V. E. Boria, D. Raboso, V. E. Semenov, "Analysis of multipactor effect using a Phase-Shift Keying single-carrier digital modulated signal", *IEEE Transactions on Electron Devices*, vol. 60, no. 8, pp. 2664-2670, Aug. 2013.
- [2] D. González-Iglesias, Ò. Monerris, M. E. Díaz, B. Gimeno, V. E. Boria, D. Raboso, "Experimental analysis of the multipactor effect with RF pulsed signals", *IEEE Electron Device Letters*, vol. 36, no. 10, pp. 1085-1087, Oct. 2015.
- [3] D. González-Iglesias, Ó. Monerris, B. Gimeno, M. E. Díaz, V. E. Boria, P. M. Iglesias, "Multipactor RF breakdown in coaxial transmission lines with digitally modulated signals", *IEEE Transactions on Electron Devices*, vol. 63, no. 10, pp. 4096-4103, Oct. 2016.

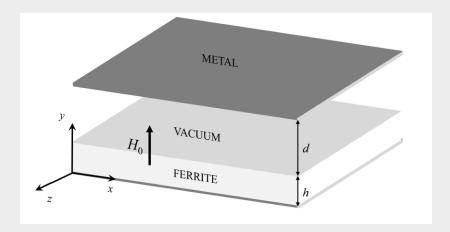
Multipactor in a ferrite-loaded waveguide

The main objective is the study of the multipactor effect in parallel-plate waveguides containing a magnetized ferrite slab:

- Computation of the multipactor RF voltage threshold for several representative cases.
- > Detailed analysis of the electron trajectories and the multipactor regimes

Two different magnetization directions for the ferrite has been explored:

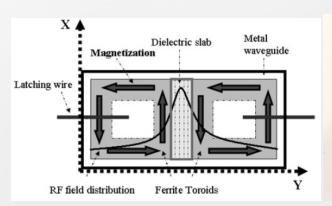




Parallel-plate waveguide partially loaded with a ferrite slab magnetized parallel to the ferrite slab direction by a static magnetic field.

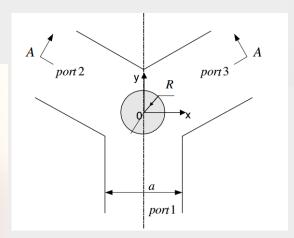
Parallel-plate waveguide partially loaded with a ferrite slab magnetized along the waveguide gap direction by a static magnetic field.

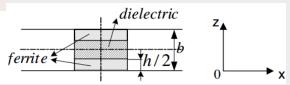
This work is aimed to be the first step towards the understanding of the multipactor phenomenon in most complex RF devices containing magnetized ferrites such as circulators, isolators and phase shifters.



Scheme of a toroidal phase-shifter

View of a ferrite junction circulator

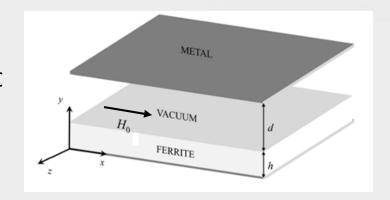




Scheme of a ferrite junction circulator

Case I: Ferrite magnetization parallel to the surface

- The external magnetic field employed to magnetize the ferrite slab is oriented in the xdirection.
- RF electromagnetic field is assumed to propagate along the possitive z-direction.
- An harmonic time dependence is implicitly assumed.
- Ferrites behave as ferrimagnetic materials when a DC magnetic field is applied. In this case, the magnetic anisotropy is described by the following permeability tensor:



$$\bar{\mu} = \begin{pmatrix} \mu_0 & 0 & 0 \\ 0 & \mu & j\kappa \\ 0 & -j\kappa & \mu \end{pmatrix} \qquad \mu = \mu_0 \left(1 + \frac{\omega_0 \omega_m}{\omega_0^2 - \omega_m^2} \right)$$
is the RF angular frequency
$$\kappa = \mu_0 \frac{\omega \omega_m}{\omega_0^2 - \omega_m^2}$$

$$\mu = \mu_0 \left(1 + \frac{\omega_0 \omega_m}{{\omega_0}^2 - {\omega_m}^2} \right)$$

$$\kappa = \mu_0 \frac{\omega \omega_m}{{\omega_0}^2 - {\omega_m}^2}$$

Case 1: Transversally parallel to the surface magnetized ferrite slab

ω is the RF angular frequency

 ω_0 is the Larmor frequency

 ω_m is the saturation magnetization frequency μ_0 is the vacuum magnetic permeability

$$\gamma = \frac{e}{m_e}$$

$$\omega_0 = \mu_0 \gamma H_0$$

γ is the gyromagnetic ratio of the electron

$$\omega_m = \mu_0 \gamma M_s$$

M_s is the saturation magnetization of the ferrite

Case I: Ferrite magnetization parallel to the surface

RF electromagnetic field computation

- In this case, the RF fields supported by the partially-loaded ferrite waveguide can be obtained analytically.
- Two families of electromagnetic field modes are found: TM^z (H_z = o) and TE^z (E_z = o).
- TE^z modes have no vertical electric field along the gap, so they are not suitable to hold a multipactor discharge. As a consequence, these modes will not be considered in this work.
- TM^z modes do have vertical electric field along the gap. The non-zero field components of such modes (in the vacuum region of the waveguide) are

Characteristic equation of TMz modes
$$\longrightarrow$$
 $\varepsilon_r k_1 \sinh(k_1 d) \cos(k_2 h) - k_2 \cosh(k_1 d) \sin(k_2 h) = 0$

$$E_{y}(y,z,t) = \frac{V_{0}k_{1}}{\sinh(k_{1}d)} \cosh\left[k_{1}\left((d+h)-y\right)\right] \cos(\omega t - \beta z) \qquad k_{1}^{2} \equiv \beta^{2} - \omega^{2}\mu_{0}\varepsilon_{0} \qquad k_{2}^{2} \equiv \omega^{2}\mu_{0}\varepsilon_{0}\varepsilon_{r} - \beta^{2}$$

$$E_{z}(y,z,t) = -\frac{V_{0}k_{1}^{2}}{\beta \sinh(k_{1}d)} \sinh\left[k_{1}\left((d+h)-y\right)\right] \sin(\omega t - \beta z) \qquad \varepsilon_{0} \text{ is the vacuum dielectric permittivity of the ferrite d is the separation between plates}$$

$$H_{x}(y,z,t) = -\frac{\omega\varepsilon_{0}}{\beta} E_{y}(y,z,t) \qquad \beta \text{ is the propagation factor } V_{0} = \int_{h}^{d+h} E_{y}(y,0,0) \, dy$$

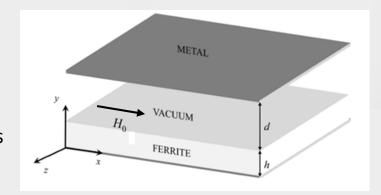
$$\kappa_1 \equiv \beta^2 - \omega^2 \mu_0 \varepsilon_0$$
 $\kappa_2 \equiv \omega^2 \mu_0 \varepsilon_0 \varepsilon_r$ - ε_0 is the vacuum dielectric permittivity ε_r is the relative dielectric permittivity of the ferrite d is the separation between plates

$$β$$
 is the propagation factor V_0 is the amplitude voltage
$$V_0 = \int_h^{d+h} E_y(y, 0, 0) \, dy$$

Case I: Ferrite magnetization parallel to the surface

The following partially filled ferrite waveguide was considered for multipactor simulations:

- Ferrite slab height, h = 3 mm
- Vacuum gap, d = 1 mm
- Saturation magnetization of the ferrite, $M_S = 1790$ Gauss
- Relative dielectric permittivity of the ferrite, $\varepsilon_r = 15.5$

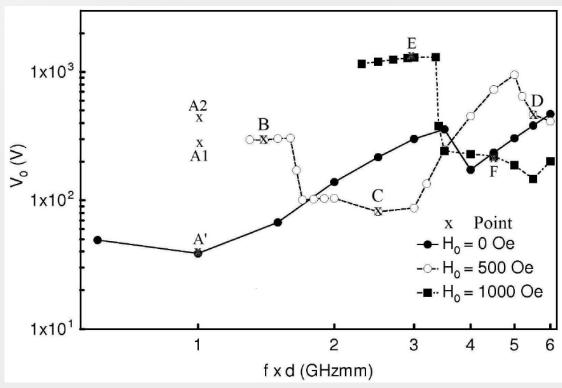


- SEY parameters for the upper metallic waveguide wall (silver): $W_1 = 30 \text{ eV}$, $W_{\text{max}} = 165 \text{ eV}$, $\delta_{\text{max}} = 2.22$
- The same SEY parameters are chosen for the ferrite surface
- Three different magnetization field values have been investigated, $H_o = 0$ Oe, $H_o = 0$ Three different magnetization field values have been investigated, $H_o = 0$ Oe, $H_o = 0$

Case I: Ferrite magnetization parallel to the surface

Multipactor susceptibility chart

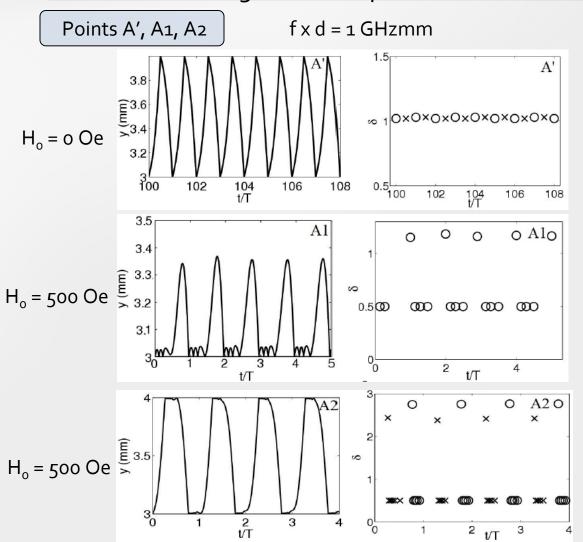
- For H_o = o Oe the ferrite exhibits no magnetic properties. Susceptibility chart is very similar to the classical metallic parallel-plate waveguide.
- For H_o = 500 Oe and H_o = 1000 Oe important variations in the multipactor voltage threshold regarding the H_o = 0 Oe case are found.
- The multipactor discharge cannot appear below 1.3 GHzmm when Ho = 500 Oe. The same occurs below 2.4 GHzmm when H₀ = 1000 Oe.
- Electron trajectories are influenced by the ratio between the RF frequency and the cyclotron one.

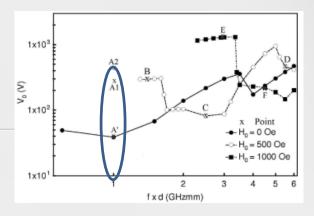


Multipactor voltage threshold as a function of the frequency gap value (gap remains fixed)

Cyclotron frequency
$$f_c = \frac{1}{2\pi} \frac{e}{m_e} \mu_0 H_0$$

Case I: Ferrite magnetization parallel to the surface





Point A':

- Double-surface multipactor discharge of order one.
- SEY slightly above the unity.

Point A1:

- No multipactor discharge.
- Single-surface electron trajectories are not synchronized with the RF electric field.
- Mean SEY below the unity.

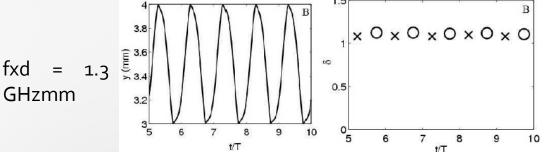
Point A2:

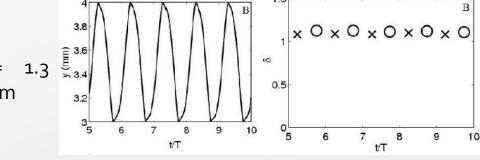
- No multipactor discharge.
- RF voltage has increased regarding point A1.
- Double- and single-surface electron trajectories not synchronized with RF electric field.
- Mean SEY below the unity.

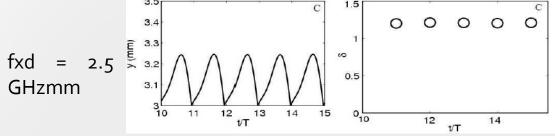
Case I: Ferrite magnetization parallel to the surface

Points B, C, D

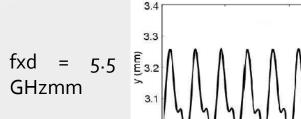
$$H_0 = 500 \, \text{Oe}$$

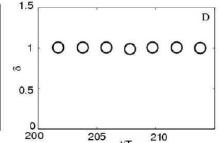


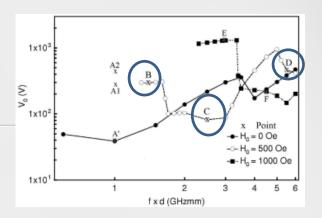




D







Point B:

- Double-surface multipactor of order one.
- SEY slightly above the unity.
- The ratio f_c/f increases regarding points A1 and A2, allowing higher flight time of the electron.

Point C:

- Single-surface multipactor of order two.
- SEY slightly above the unity.
- Multipactor voltage threshold has decreased regarding point B.
- Multipactor threshold value is below the $H_0 =$ o Oe case.

Point D:

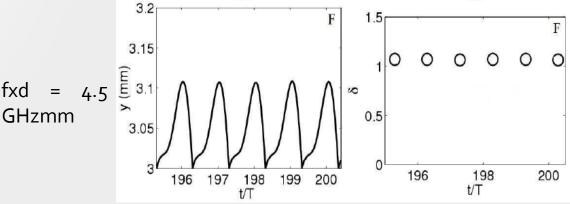
- Single-surface multipactor of order four.
- SEY slightly above the unity.

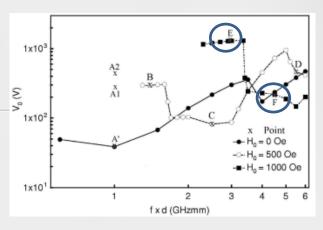
Case I: Ferrite magnetization parallel to the surface

Points E, F

$$H_0 = 1000 Oe$$







Point E:

- Double-surface multipactor of order one.
- SEY above the unity.

Point F:

- Single-surface multipactor of order two.
- SEY slightly above the unity.
- Note that there is a correspondence between points E, F and the points B, C; respectively.
- ightharpoonup Actually, multipactor curve shape for cases $H_o = 1000$ Oe and $H_o = 500$ Oe are similar.
- These facts can be explained in terms of the f_c/f ratio: similar values of this quotient imply similar multipactor resonances.

Case II: Ferrite magnetization normal to the surface

- The external magnetic field employed to magnetize the ferrite slab is oriented in the y-direction.
- RF electromagnetic field is assumed to propagate along the positive z-direction.
- An harmonic time dependence is implicitly assumed.
- Ferrites behave as ferrimagnetic materials when a DC magnetic field is applied (H_o). In this case, the magnetic anisotropy is described by the following permeability tensor:

$$\bar{\mu} = \begin{pmatrix} \mu & 0 & -j\kappa \\ 0 & \mu_0 & j\kappa \\ j\kappa & 0 & \mu \end{pmatrix} \qquad \mu = \mu_0 \left(1 + \frac{\omega_0 \omega_m}{\omega_0^2 - \omega_m^2} \right)$$

$$\kappa = \mu_0 \frac{\omega \omega_m}{\omega_0^2 - \omega_m^2}$$

ω is the RF angular frequency

 ω_0 is the Larmor frequency

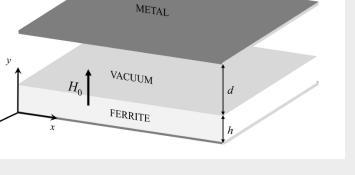
 ω_{m} is the saturation magnetization frequency μ_0 is the vacuum magnetic permeability

$$\gamma = \frac{e}{m_e}$$

$$\omega_0 = \mu_0 \gamma H_{ef}$$

 $\omega_m = \mu_0 \gamma M_s$

$$H_{ef} = H_0 - M_s$$



γ is the gyromagnetic ratio of the electron

M_s is the saturation magnetization of the ferrite

H_{ef} is the effective magnetization field within the ferrite

Case II: Ferrite magnetization normal to the surface

RF electromagnetic field computation

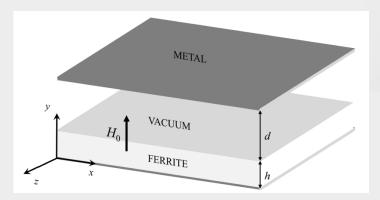
There is no analytical solution in this case, hence a numerical method must be employed. Here we will use the Coupled Mode Method (CMM):

- Numerical method in the frequency domain, originally formulated by Schelkunoff, used for analyzing the electromagnetic wave propagation inside waveguides that contain any isotropic, anisotropic or complex medium.
- The EM field components in the loaded waveguide are expanded in terms of linear combinations of the components of the EM of an empty parallel plate waveguide (method of moments).
- Can be applied in both open and closed structures.
- Provides an approximated solution of the propagation problem inside the waveguide:
 - Propagation constants
 - Profile of the electromagnetic field components

Case II: Ferrite magnetization normal to the surface

The following partially filled ferrite waveguide was considered for multipactor simulations:

- Waveguide height, d+h = 10.16 mm (WR-90 rectangular waveguide)
- Saturation magnetization of the ferrite, M_S = 1806 Gauss
- Relative dielectric permittivity of the ferrite, $\varepsilon_r = 15$



- SEY parameters for the ferrite slab are W_1 = 19 eV , W_{max} = 289 eV , δ_{max} = 2.88
- The same SEY parameters are chosen for the upper metallic wall
- The external magnetization field is H $_{
 m o}$ = 3000 Oe, thus H $_{
 m ef}$ = 1194 Oe $H_{ef}=H_0-M_S$
- The propagation of the fundamental mode is assumed

Case II: Ferrite magnetization normal to the surface

Propagation factor for the fundamental mode of the parallel-plate ferrite loaded waveguide

Propagation factor

$$\Gamma = Re(\Gamma) + jIm(\Gamma)$$

$$\vec{E}(\vec{r}) = \vec{E}_0(x, y)e^{-\Gamma z} = \vec{E}_0(x, y)e^{-Re(\beta)z}e^{-j Im(\beta)z}$$

- The fundamental mode is propagative within the explored frequency range (0.5-20.0 GHz)
- At 3.34 GHz (Larmor frequency) it is observed a sharp variation in the propagation factor due to the gyromagnetic resonance

$$\omega_0 = \mu_0 \gamma H_{ef}$$
 Larmor frequency



 $k_0 = \frac{\omega}{c}$

Real and imaginary parts of the propagation factor for a ferrite loaded waveguide with d = 1 mm as a function of the RF frequency

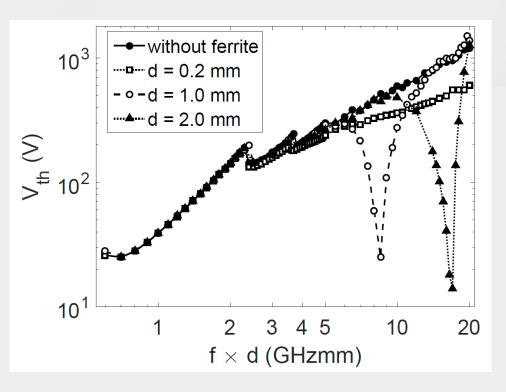
Case II: Ferrite magnetization normal to the surface

Multipactor RF voltage threshold as a function of the frequency-gap product for several waveguides

- It is varied the gap and the ferrite height but with the constraint d+h = 10.16 mm
- The without ferrite case represents a classical metallic parallel-plate waveguide with no external magnetization field.

At the view of the results:

- There is notorious difference in the multipactor RF voltage threshold between the without ferrite case and the ferrite-loaded waveguides.
- The difference between the without ferrite and the ferrite cases increases with the frequency gap value.
- It is found that the bigger the gap the higher the discrepancies with the without ferrite case. For d = 0.2 mm waveguide the maximum difference is 6.5 dB, for the d = 1.0 mm is 26 dB, and for the d = 2 mm case is 35 dB.



Case II: Ferrite magnetization normal to the surface

In order to get a better understanding of the multipactor RF voltage threshold curves, it is crucial to analyze:

RF electromagnetic fields (spatial distribution, scale analysis of the different components) Electron dynamics (find resonant electron trajectories and multipactor order)

Explicitly, the equations of motion for the effective electron (at the early stages of the electron multiplication when $\vec{E}_{sc}\approx 0$ and $\vec{E}_{pol}\approx 0$) are

$$\frac{dv_x}{dt} = \frac{e}{m_e} \left[-E_{RF,x} + \left(B_0 + B_{RK,y} \right) v_z - B_{RF,x} v_y \right]$$

$$\frac{dv_y}{dt} = \frac{e}{m_e} \left[-E_{RF,y} - B_{RF,x} v_z + B_{RK,z} v_x \right]$$

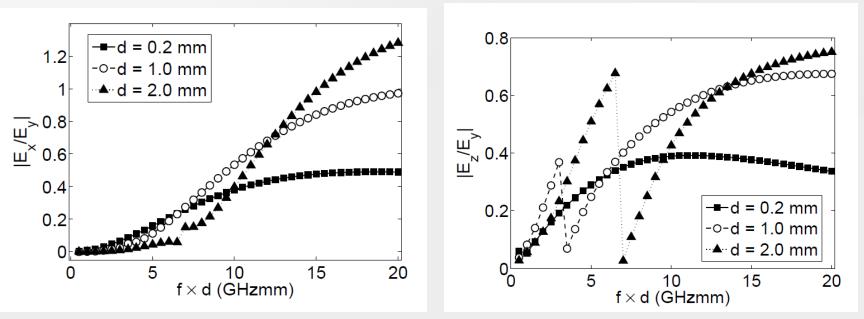
$$\frac{dv_z}{dt} = \frac{e}{m_e} \left[-E_{RF,z} + B_{RK,x} v_y - \left(B_0 + B_{RK,y} \right) v_x \right]$$

The analysis of the RF magnetic field components revealed that the terms in the form v_i $B_{RF,j}$ have very little influence in the electron dynamics.

In fact, they can be removed from the differential equations of motion

Case II: Ferrite magnetization normal to the surface

With regard to the RF electric field components, it is found that they are in the same magnitude order and, as a consequence, none of them can be neglected in the equations of motion



Left (right): quotient between the maximum absolute value along the gap of the $E_{RF,z}$ ($E_{RF,z}$) and $E_{RF,y}$ components for the ferrite loaded waveguides.

- In most of the cases the E_{RFy} component is greater than E_{RFx} and E_{RFz} .
- E_{RFx}/E_{RFy} and E_{RFz}/E_{RFy} quotients tend to increase with the frequency gap product, and the higher the gap the higher the increase of the quotients is.

Case II: Ferrite magnetization normal to the surface

Back to the simplified equations of motion, they can be expressed in the following form:

$$\frac{dv_x}{dt} \approx \omega_c v_z - \frac{e}{m_e} E_{RF,x} \cos(\omega t + \phi) \quad (1)$$

$$\frac{dv_y}{dt} \approx -\frac{e}{m_e} E_{RF,y} \cos(\omega t + \phi) \quad (2)$$

$$\frac{dv_z}{dt} \approx -\omega_c v_x - \frac{e}{m_e} E_{RF,z} \sin(\omega t + \phi) \quad (3)$$

- y-equation becomes decoupled from the x and z coordinates
- In fact, y-equation becomes the corresponding one to the wellknown classical case without ferrite
- The effect of the static field H_o is to spin the electron orbits in the xzplane

$$\omega_c = \frac{e}{m_e} \mu_0 H_0$$
 cyclotron angular frequency

$$\omega = 2\pi f$$
 RF angular frequency

RF field phase

Manipulating (1) and (3):

$$\frac{d^2v_x}{dt^2} + \omega_c^2 v_x = A_1 \sin(\omega t + \phi) \quad (4)$$

$$\frac{d^2v_z}{dt^2} + \omega_c^2 v_z = A_2 \cos(\omega t + \phi) \quad (5)$$

$$A_1 = \frac{e}{m_e} \left(E_{RF,x,0} \omega - E_{RF,z,0} \omega_c \right)$$
$$A_2 = \frac{e}{m_e} \left(E_{RF,x,0} \omega_c - E_{RF,z,0} \omega \right)$$

(4) and (5) can be analytically provided solved if spatial uniformity of the RF field is assumed

$$v_{x} = \frac{A_{1}}{\omega_{c}^{2} - \omega^{2}} \sin(\omega t + \phi) - \frac{A_{1} \sin \phi}{\omega_{c}^{2} - \omega^{2}} \cos(\omega_{c} t) - \frac{A_{2} \cos \phi}{\omega_{c}^{2} - \omega^{2}} \sin(\omega_{c} t)$$
(6)
$$v_{z} = \frac{A_{2}}{\omega_{c}^{2} - \omega^{2}} \cos(\omega t + \phi) - \frac{A_{2} \cos \phi}{\omega_{c}^{2} - \omega^{2}} \cos(\omega_{c} t) + \frac{A_{1} \sin \phi}{\omega_{c}^{2} - \omega^{2}} \sin(\omega_{c} t)$$
(7)

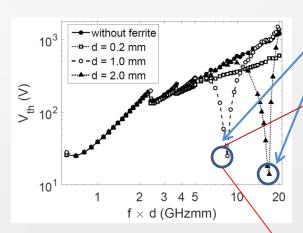
$$v_z = \frac{A_2}{\omega_c^2 - \omega^2} \cos(\omega t + \phi) - \frac{A_2 \cos \phi}{\omega_c^2 - \omega^2} \cos(\omega_c t) + \frac{A_1 \sin \phi}{\omega_c^2 - \omega^2} \sin(\omega_c t)$$

- It is assumed zero initial x and z velocities
- (6) and (7) are valid except for $\omega=\omega_c$
- The amplitude of the oscillatory terms is maximum in the neighborhood of $\omega = \omega_c$

Case II: Ferrite magnetization normal to the surface

Thus, there is a maximum kinetic energy gain for v_x and v_z in the neighborhood of the cyclotron resonance and, as a

consequence, there is a minimum in the multipactor RF voltage threshold



- It is a noticeable increase in the amplitude of the v_x and v_z in the successive oscillations
- In v_y is not observed such an amplitude increment
- Trajectory in the xz-plane is very similar to those of an electron in a cyclotron accelerator

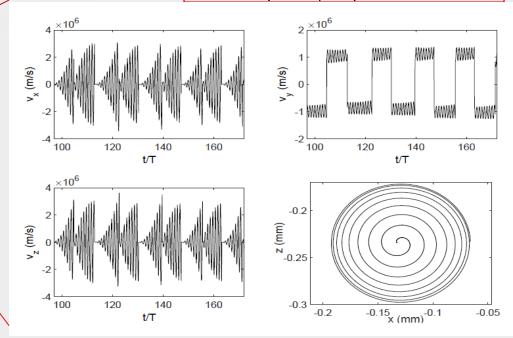
Sharp minimums in the RF
multipactor voltage threshold
due to the cyclotron resonance

d = 3.2 mm, f

d = 1.0 mm, f

d = 2.0 mm f

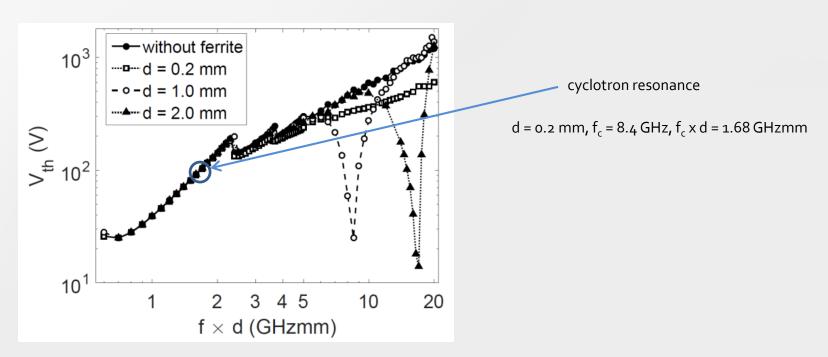
d = 0.2 mm, $f_c = 8.4 \text{ GHz}$, $f_c \times d = 1.68 \text{ GHzmm}$ d = 1.0 mm, $f_c = 8.4 \text{ GHz}$, $f_c \times d = 8.4 \text{ GHzmm}$ d = 2.0 mm, $f_c = 8.4 \text{ GHz}$, $f_c \times d = 16.8 \text{ GHzmm}$



From left to right, and up to down: effective electron velocity components as a function of the time normalized to the RF period (T), and xz-plane electron trajectory. All for a ferrite waveguide with d = 1 mm, $f \times d = 8.5 \text{ GHzmm}$, $V_0 = 25 \text{ V}$

Case II: Ferrite magnetization normal to the surface

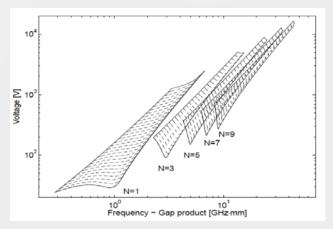
However, it is notorious that the multipactor RF voltage minimum was not observed for the case of d = 0.2 mm waveguide



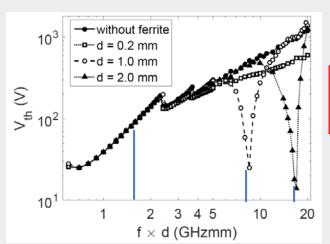
To understand this point, it is required to recall at some aspects of the classic multipactor theory for parallel-plate waveguides

Case II: Ferrite magnetization normal to the surface

- As argued before, the y-equation of motion, in first approximation, becomes the same that the classical parallelplate case (without ferrite nor external magnetic field)
- Consequently, double-surface electron resonant modes will appear in the ferrite-loaded waveguide.
- Note that the higher is the frequency gap, the higher is the order of the modes available
- Despite the classical parallel-plate waveguide, in the ferrite case, there is an acceleration in the xz-plane due to the cyclotron resonance effect (which is maximum when $\omega = \omega_c$)
- In the case d = 0.2 mm, the cyclotron resonance occurs at very low f x d, consequently only low order modes are available (with short time between successive impacts), thus no substantial gain in the transverse plane kinetic energy is obtain and the multipactor voltage threshold cannot be reduced



Multipactor resonant modes for the classic metallic paralell-plate waveguide

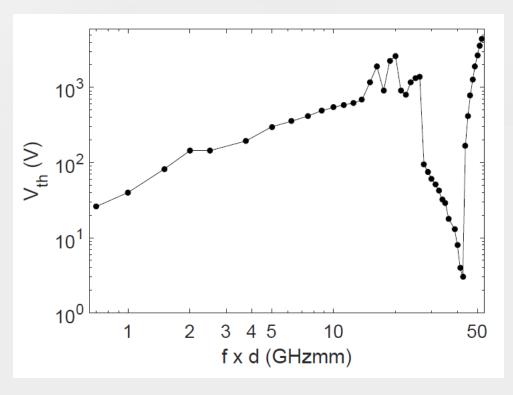


 $d = 0.2 \text{ mm}, f_c \times d = 1.68 \text{ GHzmm}$ $d = 1.0 \text{ mm}, f_c \times d = 8.4 \text{ GHzmm}$ $d = 2.0 \text{ mm}, f_c \times d = 16.8 \text{ GHzmm}$

Case II: Ferrite magnetization normal to the surface

For completeness, the multipactor RF voltage threshold curve for a big gap ferrite slab with d = 5.0 mm is computed

- Again it appears a sharp minimum in the multipactor RF voltage threshold for the cyclotron resonance
- It is worth mentioning that the typical frequency gap region at which the multipactor is explored does not exceed the 10 GHzmm
- For higher values than 10 GHzmm, the multipactor RF voltage threshold becomes very high (with regard to the typical working voltage levels of communication satellite devices)
- However, with ferrite devices, it is shown that the multipactor RF voltage can drop to very low values even for very high frequency values at which the discharge should not be expected
- As a consequence, detailed multipactor analysis of ferrite components are required in order to prevent the discharge



$$d = 5.0 \text{ mm}, f_c = 8.4 \text{ GHz}, f_c \times d = 42 \text{ GHzmm}$$

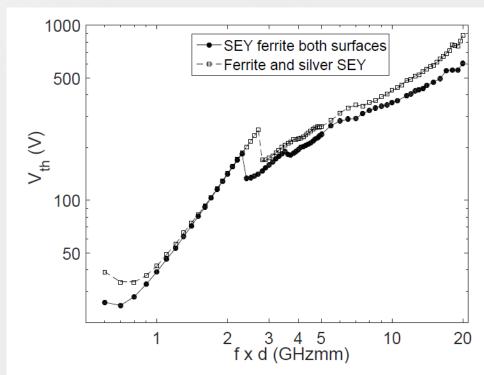
Case II: Ferrite magnetization normal to the surface

Finally, it has been analyzed the case of having different SEY coefficients for the ferrite and the metal surface

SEY parameters for silver,
$$W_{\text{1}} = 30 \text{ eV}, W_{\text{max}} = 165 \text{ eV}, \delta_{\text{max}} = 2.22$$

SEY parameters for ferrite W1 = 19 eV, W_{max} = 289 eV, δ_{max} = 2.88

- It is observed slight difference between the two multipactor RF voltage threshold curves
- Multipactor RF voltage threshold tends to be higher in the ferrite and silver SEY case
- W₁ for silver is higher than for the ferrite and, consequently, more RF voltage amplitude is required in the former case to reach the multipactor threshold



Multipactor RF voltage threshold as a function of the frequency gap for a ferrite waveguide with d = 0.2 mm, considering the same SEY properties for both surfaces and considering different SEY for ferrite and metal (silver) surfaces

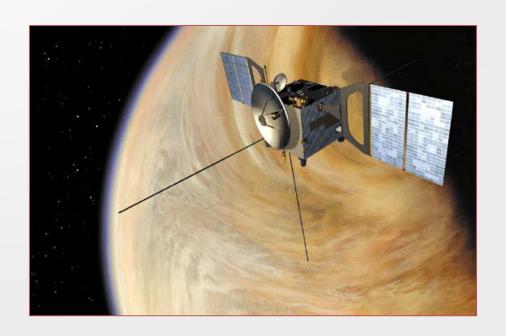
Conclusions

- Multipactor effect in a parallel-plate waveguide containing a magnetized ferrite slab has been studied.
- Two different directions of magnetization (parallel and normal to the ferrite slab) have been considered, finding different behaviors in the multipactor susceptibility curves for each case.
- For the parallel magnetization case, it is found multipactor free zones for low frequency gap zones. For higher frequency gap values the multipactor discharge can appear even at voltage values below the classical parallel-plate case multipactor voltage threshold.
- For the normal magnetization case, the multipactor voltage threshold remains very similar to the classical parallel-plate case. However, as the frequency gap increases the multipactor voltage threshold tends to drop below the classical parallel-plate case, specially when the RF frequency is in the neighborhood of the cyclotron one.

Publications

[1] D. González-Iglesias, B. Gimeno, V. E. Boria, Á. Gómez and A. Vegas, "Multipactor effect in a parallel-plate waveguide partially filled with magnetized ferrite", *IEEE Transactions on Electron Devices*, vol. 61, no. 7, pp. 2552-2557, July 2014.

[2] D. González-Iglesias, Á. Gómez, B. Gimeno, Ó. Fernández, A. Vegas, F. Casas, S. Anza, C. Vicente, J. Gil, R. Mata, I. Montero, V. E. Boria, D. Raboso, "Analysis of multipactor RF Breakdown in a waveguide containing a transversely magnetized ferrite", *IEEE Transactions on Electron Devices*, vol. 63, no. 12, pp. 4939-4947, Dec. 2016.



Thanks for your attention

Multipactor simulations with the effective electron code (V)

BPSK without filtering

Point D

$$f x d = 5 GHzmm$$

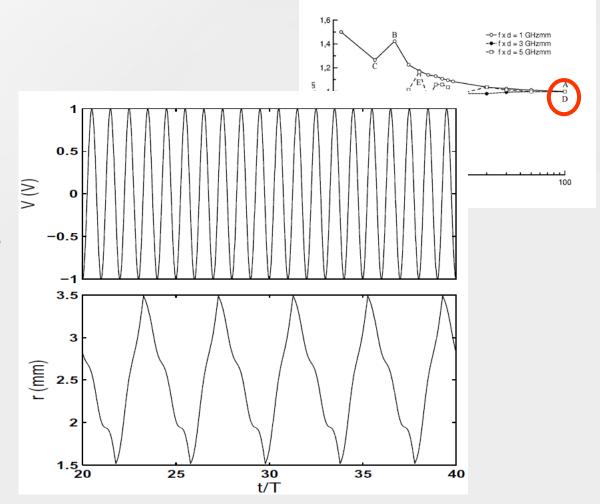
 $\xi = 100$

- Scenario very close to the unmodulated one (100 RF periods between successive phase shifts)
- Flight time between conductors:

From inner to outer → 1.49 T

From outer to inner → 2,51 T

Multipactor order \rightarrow 3 + 5



Multipactor simulations with the effective electron code (VI)

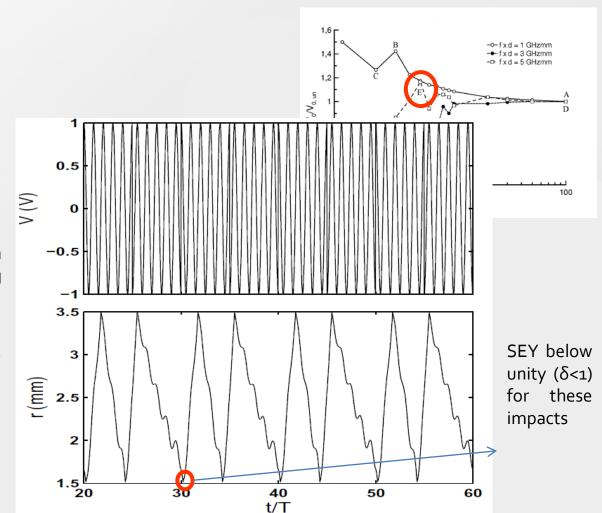
BPSK without filtering

Point E

$$f x d = 5 GHzmm$$

 $\xi = 5$

- Trajectory more complex than in point D: 4 impacts before repeating the sequence
- Flight times (in terms of T): 1.58, 2.47, 1.23, 4.72



Multipactor simulations with the effective electron code (VII)

BPSK without filtering

Point F

$$f x d = 5 GHzmm$$

$$\xi = 2$$

- Trajectory simple (similar to point D):
 impacts before repeating the sequence
- Flight times between conductors:

From outer to inner \rightarrow 2.16 T

From inner to outer \rightarrow 1.84 T

