Multi-klystron operation experience XBox-3

Matteo Volpi on behalf of XBox team

HG2017 15 of June 2017

Outline

Scan

Xbox-3 status

4x Toshiba 6MW 5us klystron 4x Scandinova Modulators Nominal - Rep Rate 400Hz Medium power tests (Xbox-3):
3D-printed Ti waveguide (UK)
3D-printed Ti waveguide (CERN)
X-band RF valve (1)

On going tests (high power) C&D: TD24 R05 SIC N2 T24 PSI N1 X-band RF valve (1)

- x4: 2 Faraday Cups (250MSPS ADCs) Used to interlock the system and are interesting for high gradient physics.
- ↑ X6: Log detectors ~50MHz Bandwidth, 45dB dynamic range (250MSPS ADCs) Used for interlocking the system.
 - X6: FPGA IQ demodulation 400-MHz AC (228MSPS ADCs) Phase and amplitude needed for reliable line/phase switching.
 - ↑ x6:3 FPGA IQ demodulation 400-MHz AC (1600MSPS ADCs)

 Most interesting signals for BD physics.

Diagnostics of the DUTs

Safety, Interlocks and control Algorithms

- Main personal safety issue is X-ray radiation during operation.
 - Interlocks on the bunker door and klystron/modulator access doors stop modulator pulsing if opened.
 - Modulator interlocked is radiation levels are too high inside or outside of the bunker.
- Machine protection issue is from high vacuum and reflected power to the klystron.
 - Double interlocking of the vacuum; 10⁻⁵ mbar interlocks the modulator and 10⁻⁷ mbar interlocks the LLRF driver.
 - Reflected power is monitored by log detectors which stop the LLRF output if a certain level is reached.
- Interlock hardware
 - Modulator control system is used for radiation and access interlocks.
 - NI 6583 module attached directly to an FPGA in the PXI crate is the main trigger and interlock module. This is used for all other interlocks; vacuum, RF, high temperatures, etc.

RF feedback algorithms: POWER

- □ Top: The DUT PID requests more/less power from the Master PID depending on the power level to the DUT.
- Mid: The Master PID requests more/less power from the PXI IQgen 1 card depending on the power level to the master.
- Bottom: The Slave PID tries to make the output power of the Slave klystron equal to the master klystron by controlling the power of PXI IQgen 2.

Conditioning control algorithm

- 1. Pulse length and LLRF frequency are set:
- 2. Fast \rightarrow pulse to pulse
 - PID loop on the incident power to the structure
- 3. Medium → seconds-minutes
 - increase power by 10kW every few minutes (cycle loop) if no BD
 - reduce power by 10kW if successive BDs too close in time
- 4. Slow \rightarrow hours
 - BDR measurement performed across a moving window of approx. 1M pulses.
 - BDR measurement and stop power increase if it is too high

OR

- Use PID loop using the system pressure as a process variable.
- Increase in pressure results in a reduction of power and vice versa.

Hybrid

- From simulation
 - Reflection at the klystron is the line with the highest reflection plus 6dB.
 - The reflection depends on the difference phase between the two klystrons.

Hybrid split over time @ 400 Hz

Splitter depends on the temperature and repetition rate => fix with the bottom PID in klystron input power

PC installed at Xbox-3

Pulse compressors tuning

The end of the cavity is a removable copper plate that can be machined

De-tuning plungers increase the mode frequency then the pulse compressor will be transparent to the incoming RF pulse.

The coarse tuning will impart a frequency variation of 20 MHz/mm, while the fine frequency tuning of the chamfer is 1.1 MHz/mm.

Pulse Compressor Pulse Flattening

The flat-top data is fitted with a 5th order polynomial.

The following feedback is applied.

$$\phi_{n+1} = \phi_n + g_p(A_{SP} - A_n)$$

+g_d(dA_n/dt)

 $egin{array}{lll} oldsymbol{A_{SP}} & \text{amplitude set point} \\ oldsymbol{A_n} & \text{current amplitude} \\ oldsymbol{g_p} & \text{proportional feedback gain} \\ oldsymbol{g_n} & \text{differential feedback gain} \\ \end{array}$

- Any change in the average RF power (such as RF power interruption due to an RF breakdown) caused the pulse compressor to cool and detune.
 - Temperature isolation
 - Frequency shift

Xbox-3 Tests

Line conditioning

Pulses in line C and D

NOTE: Both of these pulses happened just 5 ms apart.

Conditioning plots: Line 3 with PC

- Conditioning history for line 3 with pulse compressor (PC).
 - Main source of BDs/interlocks are the pulse compressor and the load.
- Started at 25Hz and 60ns pulse width. Later increased to 100Hz and 140ns pulse width.
 - Final power reached ~40MW @ 140 ns.

Conditioning plots: Line 4 no PC

- Conditioning history for line 4 without PC.
- After initial conditioning period there were few interlocks.
- Started at 25Hz and 120ns pulse width.
- Later increased to 100Hz and 480ns pulse width.
- Final power reached~11MW @ 480 ns

We restart the conditioning after install the PC => unfortunately we can't reach more than ~7MW due to the RF valve vacuum activity

RF valve conditioning in Line 4

Time

Structure conditioning

Vacuum activity

- Line 4 was not conditioned with the PC => high vacuum activity that affected line 3 as well
 - PC reflection included in the conditioning of the structure in line 4

Vacuum activity line 3 @ high power

- At high power (~40MW) we start to observe vacuum activity in the PC
 - We also have a periodical activity in the load

Load vacuum activity in line 3

- Few times per day we observe half hour of vacuum activity in the load
 - Reconditioned the NEG pump
 - Under investigation pump and controller

PC vacuum activity in XBox2

2017- 55MW TD26CC-N3 structure => line conditioned up to 60MW (no vacuum activity except during BD)

Line conditioning @ 25MW August 2014 => same PC vacuum activity as in XBox3

TD24 R05 SIC N2 (Xbox-3 CD Line 3)

Reasons of slow conditioning are BDR set at 3x10⁻⁵ and cycle loop 30k pulses. Gradient (NOT Scaled) ~95MV/m

~12 M pulses per day. ~month of conditioning Flat top pulse width 60ns.

TD24 R05 SIC N2 (Xbox-3 CD Line 3)

The conditioning of the first 200M pulses was limited by the setting of BDR and cycle pulses.

T24 PSI N1 (XBox3-CD Line 4)

In 12 days of conditioning we reach 42MW.

Run at 300Hz (150Hz each line) => fast conditioning

That correspond to a gradient of ~110MV/m (NOT Scaled)

Flat top pulse width 60ns until 300M pulses then we move to 150ns

Conclusion

- First time that we condition two lines/structures at the same time
 - Klystron power feedback algorithm works well => stable power
 - The phase also is stable we don't observe shifts due to the change of temperature. Dedicated feedback algorithm not used yet.
- As expected the conditioning of the structures is faster at high repetition rate.
 - With a proper BDR and cycle loop the structure conditioning is in agreement with the previous structures already tested at 50Hz.
- Both spare klystrons at CERN.
 - Finish installation and start running Xbox3A&B (July).
 - Third and fourth PCs already tuned and they will be install soon.

Extra slides

Hybrid Split changing rep rate

