

CLIC test and prototype structure production

15/06/2017

International Workshop on Breakdown Science and High Gradient Technology (HG2017)

> 13-16 June 2017 IFIC

Anastasiya Solodko,
on behalf of the X-band production
team

1

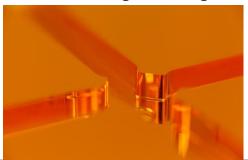
Contents

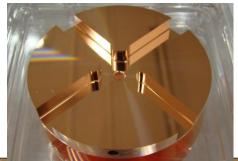
- Review of structure mechanical design
 - Baseline manufacturing workflow
 - Alternative engineering solutions
 - > Integrated version disc
 - Rectangular "disc" based on new damping features RF design (Hao Zha)
 - > Structure in halves
 - > Alternative joining methods
- Feedback to the module
 - Bonding of 500 mm disc stack
- Industrialization
- New technologies
 - > Additive manufacturing

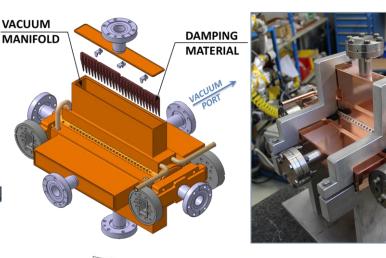

REVIEW OF STRUCTURE MECHANICAL DESIGN

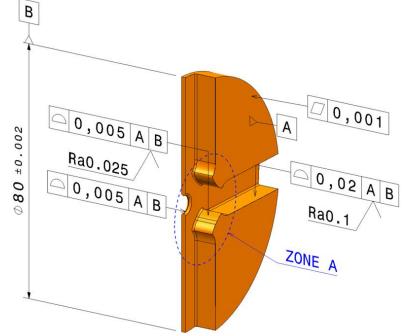
Baseline design of AS prototypes for CLIC

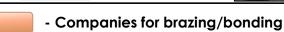
RF design


- TD26 CC (tapered damped AS with compact couplers)
- > 26 cells with damping waveguides


2 compact couplers with damping

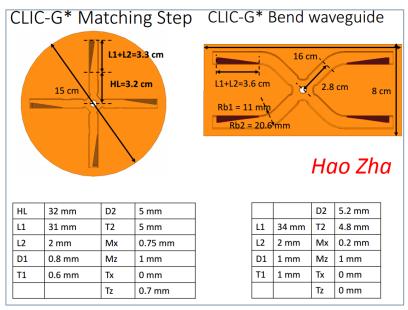

Engineering design of regular cell


- Cell iris shape accuracy (zone A) 0.005 mm
- Cell waveguide shape accuracy 0.02 mm
- Flatness accuracy 0.001 mm
- Cell iris roughness (zone A) Ra 0.025 μm
- Cell waveguide roughness Ra 0.1 μm

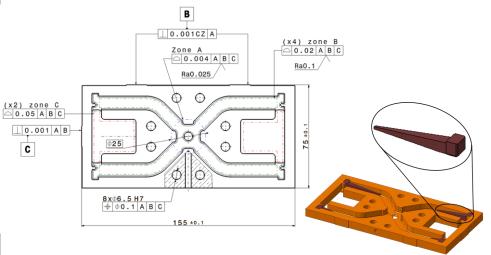

Assembly of AS with SiC absorbers

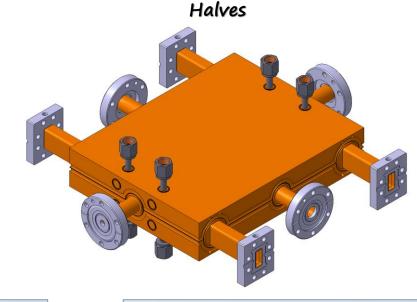
HG 2017 Baseline manufacturing flow 15/06/2017 **ENGINEERING ULTRA PRECISION** QUALITY CONTROL **RF DESIGN** DESIGN (3D models, **MACHINING** AT FACTORY 2D drawings) 4 qualified suppliers can manufacture ultraprecision discs for AS ASSEMBLY OF QUALITY CONTROL PRELIMINARY RF COUPLERS (2 brazing **CLEANING** AT CERN (visual, CHECK steps, machining (optionally) dimensional, SEM) (optionally)) 3 qualified suppliers can do brazing/bonding operations **BRAZING OF DIFFUSION BONDING** COUPLERS, TUNING FINAL DIMENSIONAL LEAK TIGHTNESS TEST OF DISC STACK STUDS, COOLING CONTROL **CIRCUITS** INSTALLATION **BAKING** RF CHECK AND LEAK TIGHTNESS TEST (vacuum 650 °C TUNING 3 days)

PACKAGING AND SHIPPING



- Companies for UP machining of components




Alternative engineering solutions

One half piece (Metal part view) Iris matching step iw/2: Waveguide opening/2 Wall profile iw/2: Waveguide width/2 Iris matching step Iris profile One quarter of cell (Vacuum part view)

"Rectangular" disc

First prototype cells will be delivered to CERN end of June (from VDL)

EBW of a test set-up is under way

7

Integrated version disc

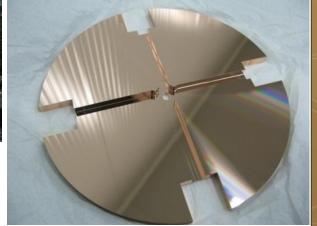
Aims:

- machining feasibility;
- bonding feasibility.

Advantages:

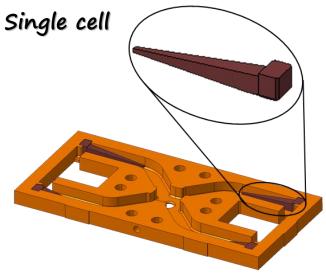
- + less components;
- + less assembly steps;
- + more accurate assembly;
- + cheaper.

<u>Issues / open questions:</u>

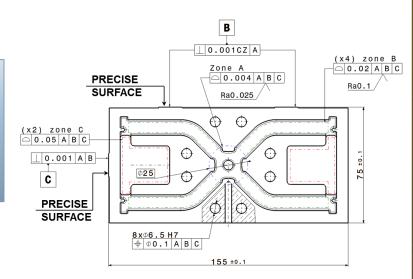

- Deformation during the machining;
- New tooling for machining, metrology (vacuum chuck) and bonding (combination of weight and compactness).

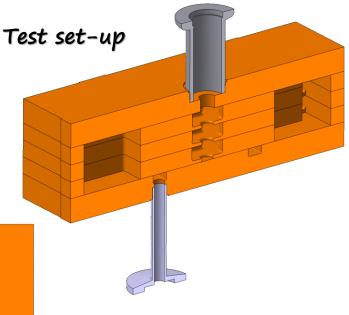
8.3192 zone A 0.005 A B C Ra0.025 3a0.025 (4x) zone B 0.02 A B C Ra0.1 ∅ 0.002 B SHARP EDGE **Φ30** \$\psi 220 \pm 0.002\$ + 0.003 A 0.003 B В 0.003 0.003

Achieved tolerances (measured in clamped position by a vacuum chuck)


- 7 prototype cells produced (VDL and Mecachrome);
- Shape accuracy of 5 μm;
- Flatness of 2 to 5 μm;
- Ra 0.012 μm.

CLIC G* bent waveguide. Test assembly


Aims:

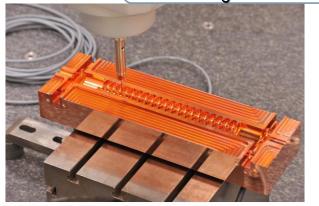

- machining feasibility;
- bonding feasibility with integrated SiC absorbers;
- leak tightness test of the cavity;
- leak tightness test of cooling circuits;
- check a different alignment method.

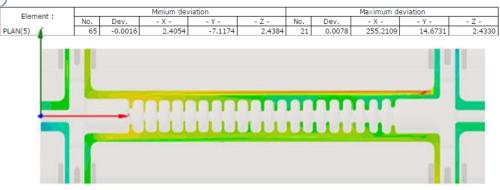
Cooling tightness

.002

.0014

0.001

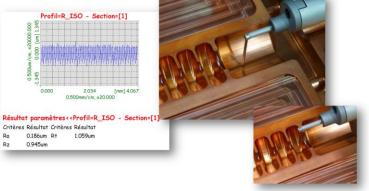

0.000


Structure in halves (previous test)

Machining

Produced at KERN Shape accuracy :14 um; Surface roughness: 186 nm

Planéité de la face de référence "A"



Shape accuracy Devist. mim.: -0.003 173.641 0.000 -5.070 Devist. Mem.: 0.004 104.909 0.000 -9.151 Toler. inf. :-0.003 Toler. mip. : 0.003 Vitesse de scanning:lmm/s Nb. de pointe: 442

Said Atieh

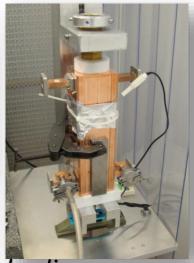
Planéité de la face de référence "C"

Element:	Minium deviation						Maximum deviation				
	No.	Dev.	- X -	- Y -	- Z -	No.	Dev.	- X -	- Y -	- Z -	
Planeite_C	1	-0.0008	-2.4994	42.7278	-2.9514	21	0.0008	-2.5007	0.0116	-14.9272	

Roughness

.0007

.001


Structure in halves (previous test)

Inlet inspection

RF measurements

Inspection after bonding

(showed that the structure was good even without tuning)

RF Measurement Result of 11WNSHVG1(T18 11G Half) clamped

Jiaru Shi

14-Jun-2011

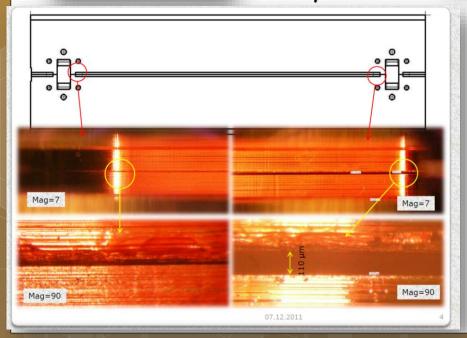
Abstract

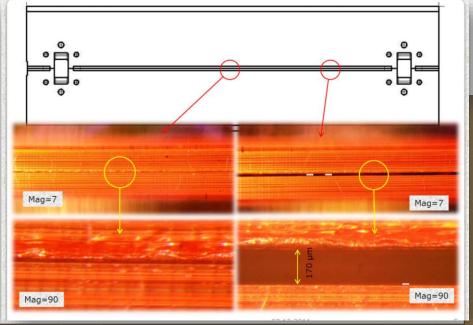
This report plots the RF measurement results of the structure 11WNSHVG1(T18 11G Half).

The structure is made in TWO HALVES and clamped together. "Beadpull"s are done to check the frequency error of each individual cell, to compare the result after bonding.

> Structure Name: 11WNSHVG1(T18 11G Half) Measured by: Jiaru SHI, Andrey OLYUNIN, Hao ZHA

date: 14-Jun-2011

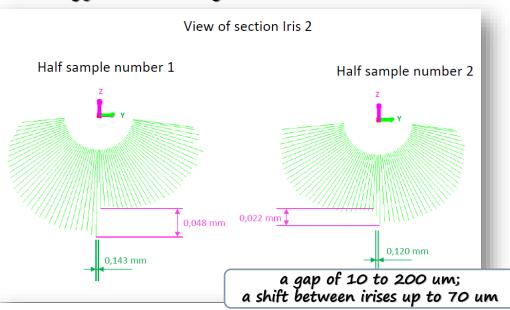

location: CERN


VNA Model: RS ZVA24A temperature: 21.2°C

Designed frequency at $2\pi/3$: 11.424 GHz

 Δf due to vacuum $\Rightarrow N_2$: -3.31 MHz

 $22^{\circ}\text{C} \Rightarrow 21.2^{\circ}\text{C}$: +0.15



0,225 mm

Metrology after bonding

0,190 mm

Half piece number 1 Half piece number 2 0,059 mm 0,078 mm

Issues / open questions:

- > alignment method;
- > review of design (less material, another cross-section);
- > joining method (brazing or/and EBW).

CLIC Half made Damped

Structure (HDS)

Advantages:

+ less components;

VACUUM PORT

COOLING CHANNEL

COOLING FITTING

HALF

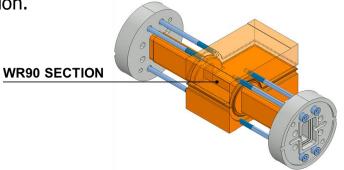
- + less assembly steps;
- + more accurate assembly;
- + avoid a "saddle" effect;
- + hard copper structure

Issues/open questions:

- longitudinal alignment

VACUUM FLANGE

WAVEGUIDE

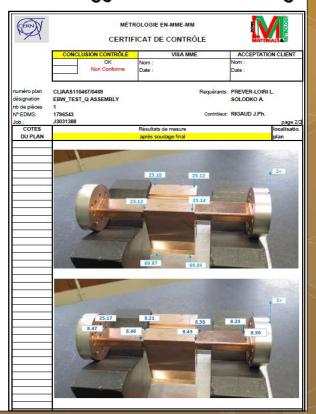

acement due to a shift between top and bottom

3

EBW test set-up

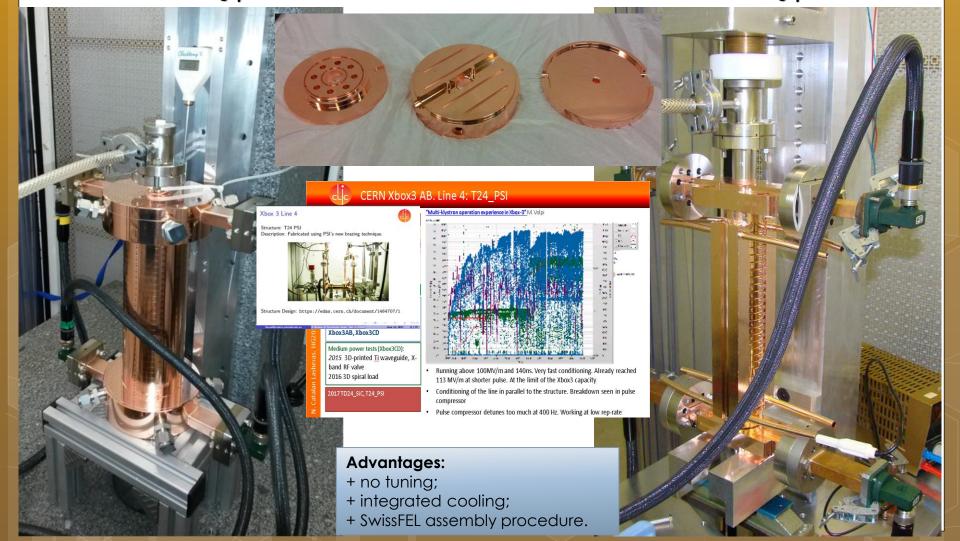
Test set-up for EBW is built to check the feasibility of new

joining solution.


Metrology before spot welding

Metrology after spot welding

Metrology after final welding



Vacuum brazing

- Two structure have been built at PSI;
- T24_PSI N1 is already under test in the Xbox-3;
 T24_PSI N2 is waiting for the bead-pull.

Brazed T24 structure SwissFEL assembly procedure

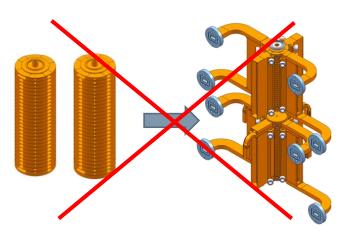
Bonded T24 structure CERN assembly procedure

FEEDBACK TO THE MODULE

Feedback to the module

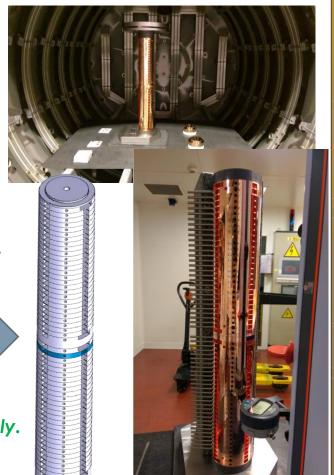
For the first superstructure two structures were assembled and at the final assembly

step they were brazed together.



messy and complex;

- alignment between AS;
- one additional heating cycle;
- expensive.


NEW DEVELOPMENT

To do diffusion bonding of the discs for two accelerating structures in one step (length is ~500 mm).

Diffusion bonding of all discs

- + less components;
- + less assembly steps;
- + more accurate assembly.

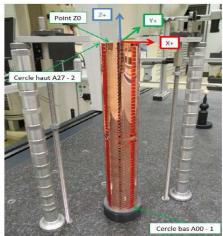
Bonding of 500 mm disc stack

BEFORE BONDING

STRAIGHTNESS

468. 0426 [m]

1. 1457 [m]

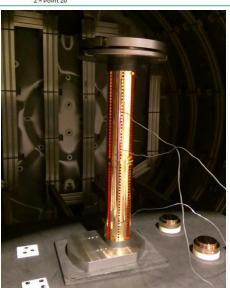

89. 8546 [DEG]

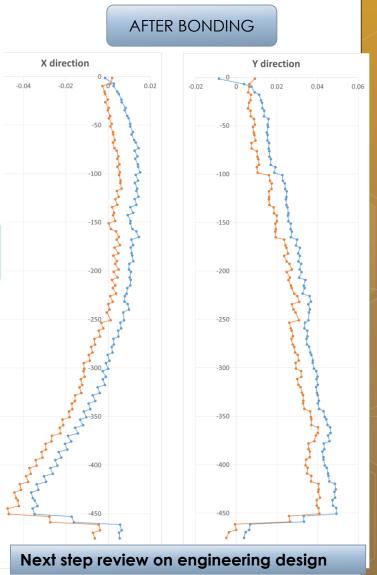
0. 0125 [m]

Perpendicularite

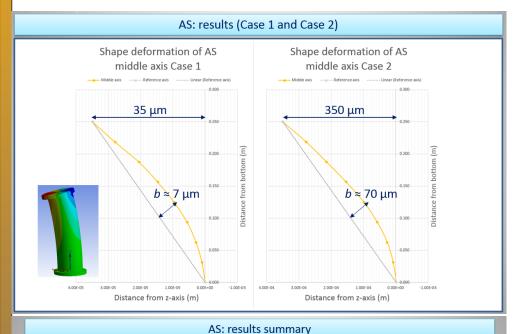
[17.88, 8.28, 458.88]

Informations relatives au référentiel de mesure




Construction du référentiel de base:

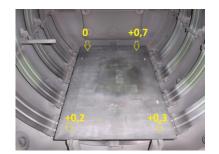
- Orientation primaire: Droite passant par le Cercle bas A00 1 et le Cercle haut A27 2
- Origine: X = Droite passant par le Cercle bas A00 1 et le Cercle haut A27 2
- Origine: X = Droite passant par le Cercle bas A00 1 et le Cercle haut A27 2
 Y = Droite passant par le Cercle bas A00 1 et le Cercle haut A27 2
 Z = Point 70

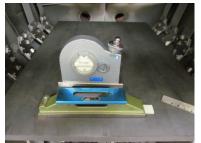


Banana-issue of a disc stack

Case #	Offset of the load (µm)	Inclination angle (°)	Cooling	Bending of the upper end (μm)	Deflection in the middle (µm)	Middle deflection as a function of offset 50 10 10 10 10 10 10 10 10 10
1	500	0	Fast	35	7	30 20 10
2	5000	0	Fast	350	70	8 1000 2000 3000 4000 5000 6000 Offset (µm)
3	500	0	Slow	33	7	Middle deflection as a function of inclination
4	0	0.1	Fast	23	4	70 60
5	0	1	Fast	230	40	(m)
ESTIMATE	100	0		7	1	* 20
6	100	0.1	Fast	30	5	(Ip) 10

Effects of load offset and incline surface on AS in diffusion bonding was simulated with FEM.

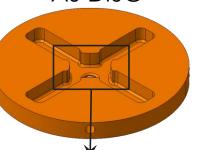

In total 6 cases with different offset or inclination angle setup were analyzed.


Based on this study, offset in load positioning is **transferred linearly** to bending ($^{\sim}7\%$) and deflection ($^{\sim}1-2\%$) of the AS. Similar conclusion applies for incline surface.

The effect of these two mechanisms sums up linearly.

Both mechanisms should be taken into account but load **offset seems be more critical**.

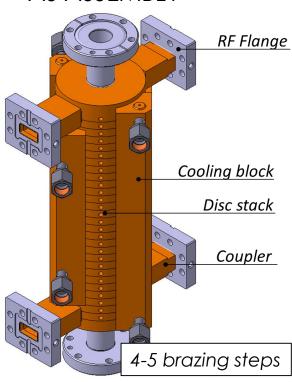
Furnace inclination measurement


Antti Moilanen

Industrialization

AS DISC

AS DISC STACK BONDING



Acceptance at CERN

AS ASSEMBLY

<u>Cell shape accuracy - 0.004 mm</u> <u>Flatness - 0.001 mm</u> <u>Surface roughness - Ra 0.025</u>

μm

Commercial suppliers:

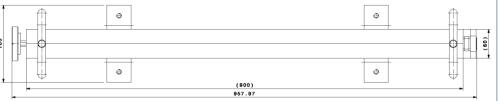
- 4 qualified companies for UP machining (DMP (ES), LT Ultra (DE), VDL (NL), Yvon Boyer (FR));
- Single-crystal diamond tool required.

REQUIREMENTS:

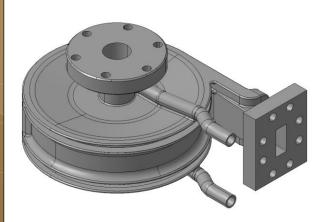
- Alignment
 - Special tooling
- Clean environment

Suppliers:

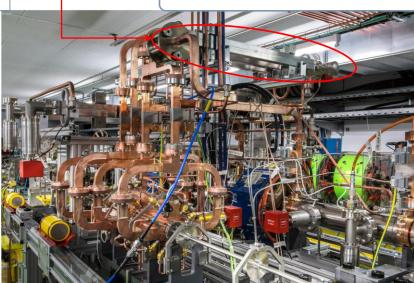
- 3 qualified companies for brazing/bonding operations, supervision by CERN (Bodycote (FR), TMD (UK), Reuter (DE): two T24 under assembly);
- Collaborators.



NEW TECHNOLOGIES


X-band load

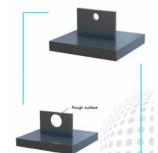
CURRENT CONFIGURATION


STUDY on ADDITIVE MANUFACTURING

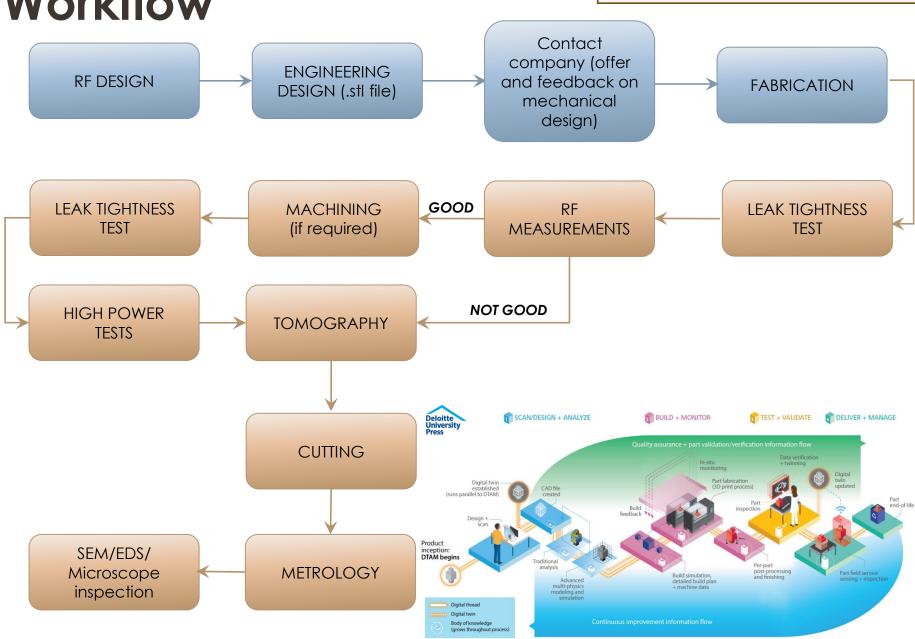
Two Beam Module in CLEX

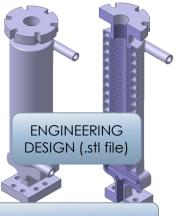
Additive manufacturing (AM)

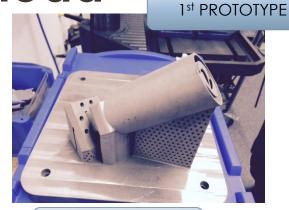
- Different companies
- Different applications:
 - Waveguides;
 - Electrodes;
 - Compact loads
 - Spiral load
 - Compact load
- Different materials:
 - > Ti6Al4V
 - > SS 316 LN
 - AlSi10Mg
- Requirements:
 - DC conductivity;
 - UHV compatibility: leak tightness and outgassing;
 - Shape accuracy and roughness;



- Highly complex geometry;
- No soldering/brazing operations;
- > Less material;
- ➤ Short time → fast prototyping;
- Without any tooling;
- Good mechanical properties.
- Difficulties and restrictions:
 - Not standard mechanical design solutions;
 - Supporting structure;
 - Design limitations (ø holes, wall thickness, angle etc.);
 - Not controlled distortion;
 - Surface quality: min Ra 1.6;
 - Accuracy: no better than ±0.1 mm;
 - > Expensive.

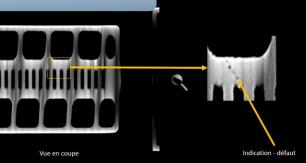





15/06/2017

Workflow

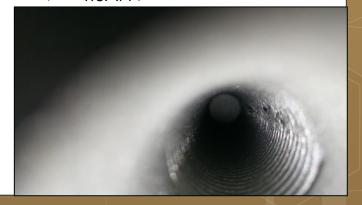
Compact load



TOMOGRAPHY

3rd and 4th PROTOTYPE

1st PROTOTYPE

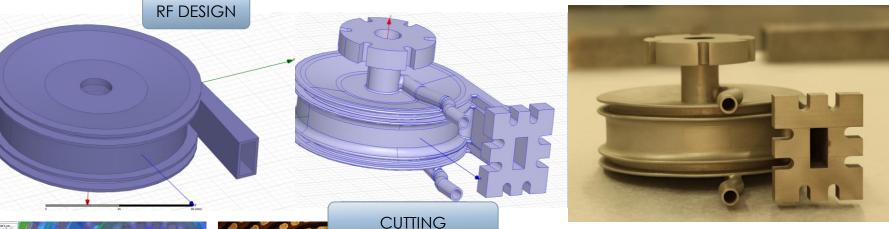

- Concept Laser
- Ti6Al4V
- > TESTS (Ti6Al4V)
 - RF measurements
 - Metrology
 - Cutting by EDM
 - Metrology

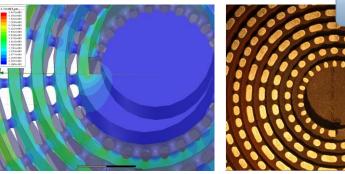
2nd PROTOTYPE

- 3T RPD British company
- > Ti6Al4V
- > TESTS
 - Leak test not tight
 - RF measurements
 - Tomography

3rd and 4th PROTOTYPES

- CERN
- > Ti6Al4V

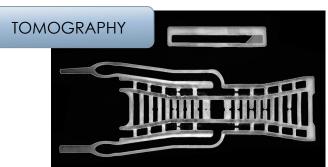

Spiral RF load

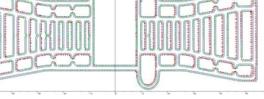

HFSS

ENGINEERING DESIGN (.stl file)

FABRICATION

o BUILT StSt




CATIA

Nominal-Actual Comparison with local BestFit on Zone C

Siemensstr. 19 35394 Giessen Germany Tel. +49 (0)641 79380 Fax +49 (0)641 7938-719 www.werthmesstechnik.de

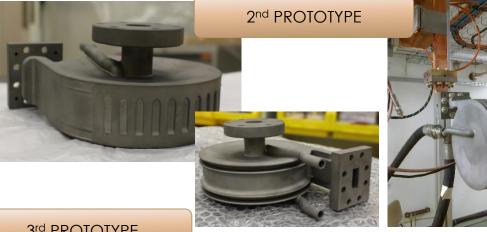
Spiral RF load

1st PROTOTYPE

- INITIAL French company
- SS 316 L
- **TESTS**
 - RF measurements
 - Cutting by EDM
 - RF measurements after cutting

2nd PROTOTYPE

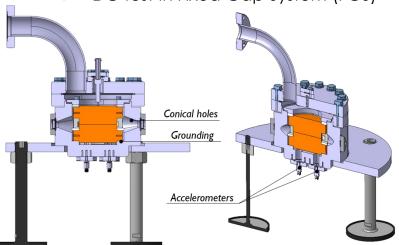
- 3T RPD British company
- Ti6Al4V (under test in Xbox 3)
- **TESTS**
 - Leak test
 - RF measurements
 - Machining of flange interfaces
 - Leak test
 - RF measurement
 - Installation in Xbox 3

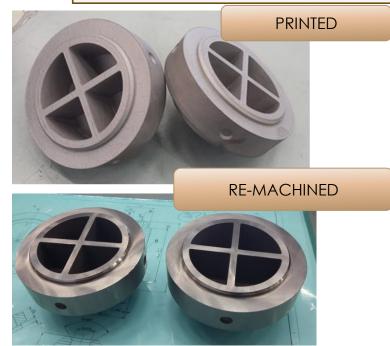

3rd PROTOTYPE

- **CERN**
- Ti6Al4V (under test in Xbox 3)
 - Leak test
 - RF measurements
 - Machining of flange interfaces
 - Leak test
 - RF measurement
 - Installation in Xbox 3

Test samples (large electrodes) for Fixed Gap System

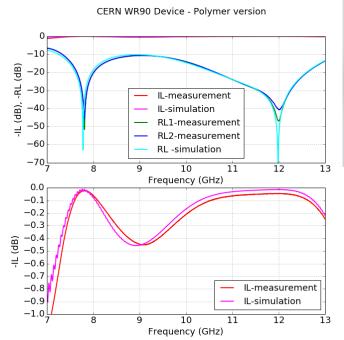
1st PROTOTYPE


- Protoshape German company
- ➤ Ti6Al4V
- Printed > re-machined


2nd PROTOTYPE

- Protoshape German company
- ➤ Ti6Al4V
- Printed > not treated

DC test in Fixed Gap System (FGS)


WR90 WG filter

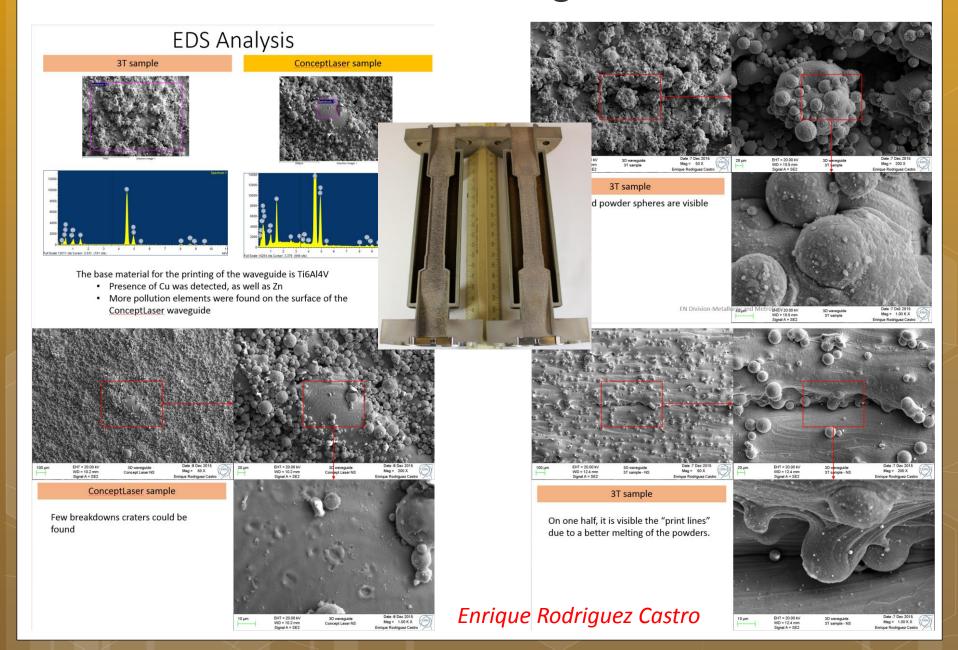
1st PROTOTYPE

- > 3T RPD British company
- > AlSi10Mg
- RF measurements

2nd PROTOTYPE

- SWISSto12 Swiss company
- Polymer with 5 µm Cu plating
- RF measurements

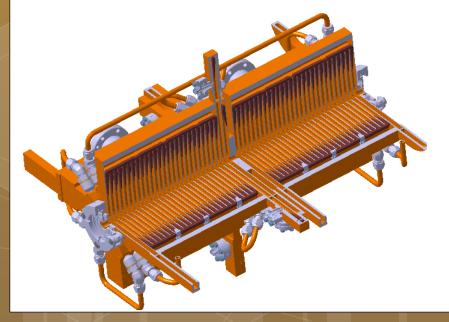
2nd PROTOTYPE



3rd PROTOTYPE


- SWISSto12 Swiss company
- AlSi10Mg with 5 µm Cu plating
- Under production

AM surface of WG after testing


31

Future plans

MORE COMPLEX (AMBISIOUS)
COMPONENTS

NEW MATERIALS

Conclusion

- 1. We are trying to introduce in fabrication:
 - Alternative engineering solutions;
 - Alternative joining methods;
 - Different assembly sequence.
- 2. New engineering design of an accelerating structure in rectangular "discs" and an accelerating structure in halves is under way with accompanying tests.
- 3. Close collaboration with industrial companies for:
 - New technologies;
 - Getting of feedback on mechanical design and assembly sequence;
 - Manufacturing and assembly of components and accelerating structures.

