

Xband Klystron/modulator experience at CERN

HG2017

G. McMonagle

16/06/2017

die OUTLINE

- Xbox1 and Xbox2
 - (summary)
- Xbox3
 - Modulators
 - klystrons
- IUWR90 Flanges
- Future

Xbox1 and Xbox2

Scandinova solid state modulators

CPI Klystron (commercial SLAC XL5)

60	-						
50	-		, , , ,	×	×	* * * *	
2 40	-	/		-	*	<u> </u>	
30 30 30 30 30 30 30 30 30 30 30 30 30 3	-	1				50 kV	
Onthnt Power (MW) 30 20						00 kV 15 kV	
ර ²⁰							
0						-	,
0 200 400 600 800 1000 1200 Drive Power (W)							

Parameters	Specifications	units	
	VKX-8311A		
RF Frequency	11.9942	GHz	
Peak RF power	50	MW	
RF pulse length	1.5	μs	
Pulse repetition rate	50 (100)	Hz	
Klystron voltage	410-470	kV	
Micro perveance	1.15E-6		

Clic Xbox1 and Xbox2

Xbox1

- Modulator installed since 2010 in CERN, first generation solid state K300
- Initially with XL5 klystron now CPI
- Structure testing in CTF2 or dogleg (beam tests CTF3)
- LLRF getting 'tired', pulse compressor difficult to tune
- Still running reasonably well with lots of babysitting
- Never reached nominal power out of klystron, limited by the high power RF network
- Using solid state 1.2KW klystron driver

Xbox1 and Xbox2

Xbox2

- same configuration as Xbox1 for modulator and klystron, (modulator more recent generation)
- LLRF, National Instrument PXI development
- New generation pulse compressor
- In commissioning with CPI klystron, oscillations observed (now disappeared)
- has been running very reliably this year, really good pulse to pulse stability
- TWT driver will be replaced with solid state amp next week

Spare Klystron

- 3rd Klystron ordered from CPI
- Klystron acceptance was done in January 2016
- When dismantling test load klystron went up to air
- Broken window
- Klystron repaired
- Initial testing (~January 2017) gun oscillation observed
- Discussions between CPI and SLAC
- Modification to gun and modulator tank (ferrite tiles)

Acceptance tests next week

Spare Klystron

S/N 003 Mitigation at CPI

Ferrites added to inside of lead cylinder on subsequent iteration

Ferrite tiles on gun corona can

Ferrite tiles also on a plate resting on bottom of oil tank below gun

Hoping this is compatible with CERN modulator connectivity

clic Xbox3

multi slot High Gradient Test Facility

Turnkey solution

Toshiba E37113 klystrons Scandinova solid state modulators

Parameters	Specifications	units
	E37113	
RF Frequency	11.9942	GHz
Peak RF power	6	MW
RF pulse length	5	μs
Pulse repetition rate	400	Hz
Klystron voltage	150	kV
Micro perveance	1.5	

Xbox3_initial configuration

Xbox3_modulators

- all 4 modulators tested successfully in factory with klystron serial #1
- All four modulators delivered to CERN and installed with tubes serial #1-4
- SAT test in diode mode with Scandinova technicians completed
- Software problem (while in remote mode) caused soft start board to burn out in charging supplies, resolved by Scandinova,
- performance of modulator now excellent, more user friendly
 GUI

Cic Xbox3_klystrons

- Initial RF tests started with individual klystrons
- First three ok
- Fourth tube did not give any RF power output
- Full reflection on input cavity back to driver
- VNA measurement showed cavity detuned
- Sent back to Toshiba with solenoid

Klystron check at TETD

- 3-1. The klystron appearance check
 - No visible damage of the klystron outside

No problem

- 3-2. Diode operation with the returned focusing magnet.
 - Operating parameter check

	Heater current	Heater voltage	Beam voltage	Beam current	Perveance
Prior to shipment	10.4A	15.2V	154.5kV	94.2A	1.55µP
Return after	10.4A	14.8V	155.6kV	94.1A	1.53µP

No problem

Klystron check at TETD

- 3-2. Diode operation with the returned focusing magnet.
 - ☐ Beam loss measurement(Kicked beam by gun oscillation)

Operation at the beam voltage of gun oscillation range was increased beam loss, but the value was within operation criteria.

No problem

Klystron check at TETD

3-3. Cavity resonant frequency check after disassembling

	Difference between the set value and the measured value
Input cavity freq	Δ -640MHz
2 nd cavity freq	Δ-16MHz
3 rd cavity freq	Δ-2MHz
4 th cavity freq	Δ-2MHz

Resonant frequency of the input and the 2nd cavity was changed.

Klystron check at TETD

- 3-3. Inside check after disassembling
 - Condition check of gun electrodes and cathode

No change in appearance.

Electron gun

Klystron check at TETD

Anode electrode

Discolored

Klystron check at TETD

- 3-3. Inside check after disassembling
 - Condition check of input cavity section

4. Consideration

- 4-1 Comparison with the simulation
 - Reverse polarity of counter coil field

Hit the drift in same place with simulation

Reverse polarity of counter coil field
 Beam landing position of reverse counter coil current operation

TOSHIBA ELECTRON TUBES & DEVICES CO.,LTD.

Normal magnetic field

4-2. Wiring of counter coil check

While checking the polarity of the power supply side.

CERN confirmed the correct connection.

crc

Toshiba investigation #4

5. Conclusion

- Hit marks of electron beam were observed on the klystron drift tube.
- Hit the drift in same place with reverse polarity or without current of counter coil simulation.
- Wiring of counter coil check
 - While checking the polarity of the power supply side.
 Unknown when the polarity is reversed.

```
When did this happen?
Why?
Why did the body delta T interlock not work?
Was it damaged at low rep rate
hence no large temperature difference?
```


7. Refurbish schedule

Cic Xbox3_klystrons

- #2 and #3 combined together
- #1 used to condition loads
- LLRF works very well
- Conditioned RF network without structure lines 3&4
- Opened network to install structure, klystron #3 vacuum problem,
- Toshiba engineer diagnoses window problem, tube sent back to Toshiba for evaluation last week
- Install #1 in modulator D to allow two klystron operation for lines 3 and 4

Implementation LLRF algorithm

- Works well in test bench
- Implemented on modulators C and D
- Combination of high power very good and switching between lines worked well (Matteo's talk)
- Operation problem when ramping up after breakdown, phase instability
- Investigation shows problem with tube #2
- Filament hours 4619, high voltage hours 3229

-122kV ---132kV ---142kV

Solid state amplifier and low level changed
Problem stayed with klystron

Small changes in solenoid or counter coil only shifted the problem to different input power

VNA measurement on input cavity, frequency ok

Implementation LLRF algorithm

26th May

9th June

Increased radiation levels
Water cooling outlet of solenoid

Perveance change of #2 with rep rate

Initially asked to investigate why power output had reduced on klystron

Noticed perveance change

Increased heater current by 1 amp and recovered tube perveance

Rep rate changed again perveance changed More investigations

Heater curves #2

clc

Xbox3 today

i IUWR90 flanges

- New unisex Xband flanges are used in Xbox3
 - International committee with representatives of KEK, SLAC and CERN
 - Tested in SLAC up to 40 MW,1us and 10MW,200 ns
 - Tested at CERN, 5us, 5MW, 400Hz and ~42 MW, 200ns, 200Hz
 - Copper plating optimised
 - Vacuum gasket optimised, tried machined gasket and stamped gasket

clic IUWR90 flanges

- Stamped gaskets
 - Friction fit
 - No problem in mounting
 - external machined edges of flange allowed alignment by touch
- Machined gasket
 - Loose fit needs to be held in place
 - Mounting jig needed

Stamped gasket with friction fit is now being used

clic FUTURE

- Complete high gradient structure testing program by 2019
- Complete commissioning Xbox3 this year
- Configure Xbox1 to power structure in CLEAR (2018)
 - Upgrade LLRF? And change pulse compressor?
 - Upgrade existing modulator to 100Hz?
- Upgrade Xbox2
 - Two structure testing, variable attenuator (Veronicas talk)
 - Upgrade existing modulator to 100Hz
- Xbox3
 - 50% of Xbox3 to Melbourne, collaboration
 - Conditioning structures seems to be dependant on number of pulses
 - Higher rep rate faster conditioning ?

ScandiNova

June 16, 2015 I 1

DUAL X-BAND 2X 6MW RF UNIT BASED ON K300 PLATFORM

K300 Platform front/side view

clic FUTURE

- Klystron based CLIC
- High efficiency klystron development (Igor's talk)?
- Would need two klystrons per 2 m of LINAC
- Compact modulator needed for tunnel integration
- Test stand at CERN?

ScandiNova

DUAL X-BAND 2X 50MW RF UNIT BASED ON K200 EXTENDED PLATFORM

June 16, 2015 | 1 2

K200 Platform front/side view

Main Parameters	Values		
RF Peak Power	100 MW (2x50)		
RF Average Power	7.5 kW		
Pulse Width	1.5 µs		
Pulse repetition	50 Hz		
Klystron Efficiency	75%		
Perveance	0.86 µperv		
Pulse Voltage	360 kV		
Pulse Current	185 A		
Mod. Average Power	21 kW		
Length	1420 mm		
Depth	1815 mm		
Height	1990 mm		

