



# Sub-system integration for the VBOX

César Blanch Gutiérrez

On behalf of the Group of Accelerator Physics (IFIC)

16/06/2017





- Layout and integration
- Vacuum subsystem:
  - Vacuum equipment and system description
  - Vacuum simulations
  - Vacuum simulations: upgrade studies
- Cooling subsystem
  - Cooling plant
  - Demineralizer plant
  - Control system



### Layout and integration



3D view of the VBOX lab



C. Blanch – HG 2017 – Jun2017

GAP

CSIC

### Layout and integration



Changes in the dimensions of the modulators



CSIC

VNIVERSITAT DÖVALÈNCIA

- Ultra high vacuum system
  - Expected pressure ~ 5x10<sup>-8</sup> mbar
- Turbo pumping group for primary pumping
  - Pfeiffer HiCube 80, Duo 3



#### Technical data Backing pump Duo 3 Cooling method, standard Air Flange (in) DN 63 CF-F Flange (out) G 1/2" Fore-vacuum safety valve 230 V AC, 50/60 Hz Mains requirement Pumping speed backing pump 2.5 m<sup>3</sup>/h Pumping speed backing pump at 50 Hz 2.5 m<sup>3</sup>/h Pumping speed for N<sub>2</sub> 67 l/s Turbopump HiPace 80 Turbo pumping station Туре < 5 · 10<sup>-10</sup> hPa | < 3.75 · 10<sup>-10</sup> Torr | < 5 · 10<sup>-10</sup> mbar Ultimate pressure 40.1 kg | 88.4 lb Weight

Pumping time does not contain run-up time and desorption.

- Ready for gas (N<sub>2</sub>) venting
- Ready for leak detector connection



- Ultimate vacuum performed by ion pump + NEG cartridge
  - Nextorr D 100-5 pump \_\_\_\_
    - Extremely compact and light pump (2,2 Kg)
    - Ion pump and NEG cartridge in the same element
    - High pumping speed for all active gases
    - Pumping also noble gases and CH<sub>4</sub> •

| Initial pumping<br>speed (I/s) | Gas                | NEG activated | NEG saturated |
|--------------------------------|--------------------|---------------|---------------|
|                                | O <sub>2</sub>     | 100           | 4             |
|                                | H <sub>2</sub>     | 100           | 6             |
|                                | CO                 | 70            | 5             |
|                                | N <sub>2</sub>     | 40            | 4             |
|                                | CH <sub>4</sub>    | 15            | 5             |
|                                | Argon <sup>1</sup> | 6             | 6             |



NEXTorr D100-5

Sorbed Quantity [Torr I]





CSIC

- Vacuum monitoring by ion pumps measurement and vacuum gauges
  - Full range Pirani/Bayard-Alpert gauges
  - From 1x10<sup>\*3</sup> down to 5x10<sup>-10</sup> mbar
  - DN 40 CF flange
- All metal valves for pumping group connection
- He leak detector for vacuum leak tests
  - Minimum detectable leak rate 5x10<sup>-12</sup> mbar\*l/s
  - Backing pump capacity: 15 m<sup>3</sup>/h
  - Pumping speed for He: 2,5 l/s
  - Possible to work standalone or connected to the turbo pumping group











CSIC

VNIVERSITAT ØØVALÈNCI



- Vacuum simulations
  - Monte-carlo simulations performed with Molflow software
  - Simulations of effective vacuum pumping speed in the pumping port for H<sub>2</sub>(dominant gas) at molecular flow



- DN35 cross Face where effective pumping speed is calculated Nextorr Pump model
- DN35 diameter cross
- Effective pumping speed in pumping port : 38 l/s



CSIC

VNIVERSITAT DÖVALÈNCI





- Vacuum simulations
  - Apply the obtained effective pumping speed into the pumping ports
  - Estimated outgassing rate: 3x10<sup>-10</sup> mbar\*l/s/cm<sup>2</sup>
- Pressure profile inside the wave guides obtained



- Max. pressure: 4x10<sup>-7</sup> mbar
- Min. pressure: 5x10<sup>-8</sup> mbar

CSIC

VNIVERSITAT DÖVALÈNCI





- Vacuum simulations
  - How can we get lower pressure if needed?
    - Adding pumps and therefore pumping ports (expensive)
    - Changing the current pumps for "bigger" ones (expensive)
    - Improving the effective pumping speed ("cheap")
    - Reducing the outgassing (cleaner elements, bake-out, etc)





 Higher pumping speed pumps would make the effective pumping speed to increase too (not linealy)

- 🗆 ×

Effective pumping speed: 100 l/s





3 Pumping ports: 100l/s

- Some improvement in the vacuum level

Profile plotter

CSIC

VNIVERSITAT ØØVALENCI

# CERN

### Vacuum subsystem

- Vacuum simulations Pumps addition
  - Where to add the pump? Where the pressure is higher
  - Higher improvement in the vacuum level than using bigger pumps





CSIC

¢

VNIVERSITAT

- Vacuum simulations improving eff. Pumping speed
  - Increase Seff by increasing the volume of the chamber where the pump is and therefore the conductance





CSIC

### Vacuum simulations – improving eff. Pumping speed





<complex-block>

#### DN100 diameter cross



- Simulations show a lower final pressure when using DN63 instead of DN35
  - Less improvement from DN63 to DN100



CSIC

NIVERSITAT ÖVALÈNCI



- Installation and vacuum tests
  - Installation in the lab already in progress
  - We found difficulties to leak tight the wave guides using the copper gaskets provided by Mega Industries
  - A later study showed us that the Mega gaskets are too hard and the flange cannot deform the gasket enough to make a good seal
  - A heat treatment (annealing) to the gaskets is missing
  - Mega Industries admitted the mistake during the production process and will provide us a new gaskets set with the annealing done





CERN gasket

Mega Industries gasket

CSIC

16



- Installation and vacuum tests
  - While waiting for the new gaskets a 1/3 of the waveguides line is already installed using old gaskets
  - Already under vacuum
  - Pressure ~5x10<sup>-8</sup> mbar -> confirms the vacuum simulations





- Summary
  - Expected pressure ~ 10<sup>-8</sup> mbar
  - Pressure profile obtained and the higher pressure zone was localized
  - Upgrade studies done in order to improve the vacuum level if needed
  - Changing the pumping cross size is a cheap way to get higher effective pumping speed and improve the vacuum
  - To change to bigger pumps doesn't seem to be the best option since the ratio price/improvement is not the best.
  - Adding a new pumping port makes the highest improvement but it is more expensive
  - We found a problem with the gaskets-> solution is on going
  - 1/3 of a waveguide line already installed and under vacuum confirms the simulations





Secondary circuit

- Used to cold down modulators, klystron and RF water loads
- Cooling plant + water demineralizer plant
- Cooling plant
  - 165 KW max. cooling power machine
  - 2 water closed circuits + heat exchanger



19



### Cooling plant

- **Primary circuit** 
  - Cooling machine and pumps installed in the roof of the building •
  - Chiller has 3 compression stages for better performance and power save. •
  - Temperature range inlet-outlet in the cooling machine 12°C / 7°C •
  - Runs normal network water •
  - Temperatures and pressures monitored
  - Automated 3 ways valve to adjust the flow passing through the heat exchanger ۲





1.0 bar

7 %

PARC CLENTIFIC

VNIVERSITAL & IDVALENCIA

Edifici 1

45.2 deg C

44.7 deg C

Circuit Secundari

20

Close



### Cooling plant

- Secondary circuit
  - Feeds independently both modulators+klystrons and the RF loads
  - Pumps and heat exchanger installed in the basement of the building
  - Temperature range inlet-outlet in the heat exchanger 28°C / 18°C
  - Runs demineralizer water
  - Temperatures, pressures, flows and water conductivity monitored
  - Automated valves adjust independently the flow of each modulator









- Cooling plant
  - Demineralizer plant
    - Integrated within the cooling system
    - Provides demineralized water to the secondary circuit
    - Klystrons need low conductivity water for cooling (0.1 1  $\mu$ S/cm)
    - Water softener + reverse osmosis
    - Final ultra pure water with conductivity: 0.1  $\mu\text{S/cm}$





- Control system and operation
  - PC interface
  - Integrates and control both cooling circuits and demineralizer plant
  - Allows to adjust diary working schedule to automatically start/stop the system
- Primary circuit control
  - Monitor the cooling machine
  - Automatically fill up the circuit if it is necessary
  - Allows to setup the pressures
  - Controls the 3 ways valve in order to get the water temperature set up in the secondary at the exit of the heat exchanger







- Secondary circuit and demineralizer plant control
  - Monitor the water conductivity and recycle the water if it is over the limit
  - Automatically fill up the circuit if it is necessary
  - Controls the pump speed and allows to set up the modulators inlet pressure
  - Allows to set up independently the flow in each modulator
  - Monitor pressure and temperatures







- Summary
  - 2 closed circuits + heat exchanger
  - Demineralizer plant providing water with 0.1  $\mu\text{S/cm}$
  - Allows to monitor, set up and control pressures, temperatures and flows in both circuits
  - Controls the demineralizer plant
  - System is under commissioning right now
  - Tested without modulators
  - Still need to do test with modulators







# THANK YOU FOR YOUR ATTENTION