

Two stage RF pulse compression

Ping Wang, Jiaru Shi, Huaibi Chen

HG2017, 11-June-2016, IFIC (CSIC-UV) Valencia, Spain

- > Two stage pulse compression
- ➢ RF design and fabrication
- > Upgrade of the S-band test stand
- ➤ Summary and plan

SLED type pulse compressors

1974,SLAC,S-band

Cylinder Cavity: TE₀₁₅

1983,CERN,S-band

Spherical Cavity : TE₄₆₁

2013,CERN,X-band

1984,CERN,S-band

Cylinder Cavity: TE₀₃₈

2016,SLAC,X-band

Cylinder Cavity :TE_{01&}TE₀₂

Cylinder Cavity :TE_{0,1,32}

Spherical Cavity :TE₁₁₄

- [1] 1974-SLAC-Z. D. Farkas-A METHOD OF DOUBLING SLAC' s ENERGY
- [2] 1983-A. Fiebig and R. Hohbach STUDY OF PEAK POWER DOUBLERS WITH SPHERICAL RESONATORS
- [3] 2004-CERN-Note-High-power_Microwave_Pulse_Compression_of_Klystron
- [4] 2010-RuPac-A 12 GHZ PULSE COMPRESSOR AND COMPONENTS FOR CLIC TEST STAND
- [5] 2016-ipac16-Wanjuwen-R&D FOR A SUPER COMPACT SLED SYSTEM AT SLAC

BOC type pulse compressors

1990, Igor, For VLEPP, $TM_{25,1,1}$ 2000, CERN, For CTF3, $TM_{10,1,1}$

2012, PSI, For SwissFEL, TM_{18,1,1}

1994, KEK, For KEKB, TE_{620}

 [1] 1994-KEK-Linac-DEVELOPMENT OF AN RF PULSE COMPRESSOR
[2] 2013-CERN-Igor-X-band SLED type Pulse Compressor
[3] 2016-CLIC_Woekshop_PSI_FEL_BOC
[4] 2017-DESIGN, FABRICATE AND COLD TEST OF A C-BAND BARREL OPEN CAVITY PULSE COMPRESSOR 2017, IHEP, TM_{6,1,1}

SLED II pulse compressors

2005,SLAC,For NLC (11.424GHz)

2006,CERN,For CLIC (30GHz)

1997, KEK, For e+e- linear collider (5.712GHz)

SLED II

 $\operatorname{SLED} \Pi$

SLED with coupled cavities

[1] 1997-KEK-T Shintake-IEEE-DEVELOPMENT OF C-BAND RF PULSE COMPRESSION SYSTEM

[2] 2005-SLAC-SamiG.-PRST-High-power multimode X-band rf pulse compression system for future linear colliders

[3] 2006-CERN-Igor-EPAC-STATUS OF 30 GHZ HIGH POWER RF PULSE COMPRESSOR FOR CTF3

New CLIC'k RF unit layout

- Two stage pulse compression
- ➢ RF design and fabrication
- Upgrade of the S-band test stand
- ➤ Summary and plan

Two stage pulse compressor

Two stage pulse compression based on pulse compressor with correction cavities

Two stage pulse compressor

12

- High power gain .
- Low input power
- •

> Two stage pulse compression

➢ RF design and fabrication

- > Upgrade of the S-band test stand
- ➤ Summary and plan

S-band RF design

Large	Q0	Qe	Beta
Eig	100650	14326	7.026
Drive	100830	14320	7.041

Small	Q0	Qe	Beta
Eig	58811	17150	3.429
Drive	58825	17223	3.415

Two stage pulse compressor

	Peak Power Gain	Efficiency
9L&9L	18.7155	42.14%
9L&1L	22.2505	40.94%
9L&1S	21.9955	40.10%
9S&1S	19.2979	35.71%
(1L+8S)&1S	20.6935	37.41%
(3L+6S)&1S	21.2474	38.42%
(1L+6S)&1S	20.3325	35.18%
7S&1S	19.0187	33.60%
(1L+4S)&1S	18.3564	31.07%
(1L+2S)&1S	14.7390	25.32%
3S&1S	13.8318	23.95%

S-band RF design

Cavities fabrication

- > Two stage pulse compression
- ➢ RF design and fabrication
- Upgrade of the S-band test stand
- ➤ Summary and plan

S-band test stand at Tsinghua

11111

Development of LLRF system

Test of LLRF system

Phase and Amplitude Modulations

SLED: $\varphi_1 = \varphi_2 = 0$

AM: $\varphi_1 = -\varphi_2$

Performance of LLRF system

- > Two stage pulse compression
- ➢ RF design and fabrication
- > Upgrade of the S-band test stand
- ➤ Summary and plan

Summary and plan

Summary

- Two type of resonant cavities are being fabricated for two stage RF pulse compression
- LLRF system has been developed to generate phase modulated pulse for two stage pulse compression

Plan

More resonant cavities to be fabricated and high power test for the two stage pulse compressor

Thanks for your attention !

Acknowledgement

Many thanks to Igor Syratchev (CERN) and Hao Zha (Tsinghua)

HG2017, 11-June-2016, IFIC (CSIC-UV) Valencia, Spain

