LHC impedance model and single beam instabilities

N.Biancacci, D.Amorim, X. Buffat, L. Carver, E.Métral, B.Salvant

2nd review on LHC performance limitations
29-11-2016
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
How good is the transverse impedance model?

- LHC transverse impedance dominated by collimators.
- Experience gained so far through:
 - Direct methods: Collimator impedance measurements from tune shift Vs gap movement.
 - Indirect methods: octupole threshold measurements during collimation MDs and dedicated MDs.
Collimator tune shift measurements: TCSG.D4L7.B1

\[\Delta Q_{\text{one}} = 3.94361e^{-05} \pm 1.39894e^{-05} \]

- Measured $3.9e^{-5}$, predicted $3.2e^{-5}$ tune shift @ $Q' = 5$ - > factor 1.2
- See also ColUSM 76 for details.
Close agreement between theory and simulation!
TCP.C6*7 slightly under-estimated (factor ~1.8)
Collimator tune shift measurements: TCP*B2

- Close agreement between theory and simulation!
- TCP.C6*7 slightly under-estimated (factor \(\sim 1.2 \))
Collimator tune shift measurements: TCSG*B1

- Factor ~3.2 in H, ~2.6 in V w.r.t. the model.
- Huge intensity loss during measurement provoked by high amplitude kick -> may lead to overestimation of the tune shift.
Collimator tune shift measurements: TCSG*B2

- Factor ~2.6 in H, ~1.7 in V w.r.t. the model.
- Less intensity loss -> More reproducible measurement.
Octupole threshold measurements

• TCSG.*7 at 8.0 sigma (2015)

Extensive report in L.Carver et al. in proc. of IPAC16
Octupole threshold measurements

- **TCSG.*7 at 7.5 sigma (2016)**

 DELPHI threshold prediction
 \(J_{\text{ext}} > 0, \ N_b = 1\times11, \epsilon = 2, \text{ um} \)

- Reasonably close to prediction.

See also “Stability margins” in [LBOC Meeting No 57](#)
Octupole threshold measurements

- **TCSG.*7 at 6.5 sigma (2016)**

 - Factor ~1.4 discrepancy w.r.t. prediction.

See for details: [LBOC Meeting No 63](#)
Octupole threshold measurements

• **TCSG.** 7 at **6.0 sigma** (2016)

 - Factor ~1.3 discrepancy w.r.t. prediction.

See for details: [LBOC Meeting No 63](#)
Summary of octupole thresholds measurements

LHC 40cm squeezed optics, 100 turns damper, and 1.2e11 bunch in 2um emittance.
Summary of octupole thresholds measurements

LHC 40cm squeezed optics, 100 turns damper, and 1.2e11 bunch in 2um emittance.
Summary of octupole thresholds measurements

LHC 40cm squeezed optics, 100 turns damper, and 1.2e11 bunch in 2um emittance.

Measurements scaled to 1.2e11 in 2um emittance if needed.

(*) Scaled to H plane from V plane considering the factor ~1.2 from impedance.

(**) Scaled to 40cm squeeze with the factor ~1.1 from impedance.
Summary of octupole thresholds measurements

LHC 40cm squeezed optics, 100 turns damper, and 1.2e11 bunch in 2um emittance.

Fill 4855, ~270 A (*)
Fill 4855 ~253 A
Fill 4804, 88 A (**)
Discrepancy 7.5 -> 6.5 sigma to be understood

Several fills during 2015, 120 A (**)

Measurements scaled to 1.2e11 in 2um emittance if needed.

(*) Scaled to H plane from V plane considering the factor ~1.2 from impedance.

(**) Scaled to 40cm squeeze with the factor ~1.1 from impedance.
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
Could it explain some of the 2012 instabilities or do we need other mechanisms?

We compare the impedance model results for single beam octupole threshold against the instabilities observed in 2012 referring to:

1) N. Mounet, 2012 [CERN-ATS-Note-2012-073](https://cern.ch)
2) N. Mounet, 2014 [Evian’s paper](https://cern.ch)
3) G. Arduini, 2012 [LMC (15/08/2012)](https://cern.ch)
Could it explain some of the 2012 instabilities or do we need other mechanisms?

- **Case: LOF > 0**
- Both beams are considered together.
- Agreement for two cases in high Q’ region > 10 units.
- Instabilities occurred also at high octupole current with damper on -> Not explained by impedance only (Coupling? Q’’?)
Could it explain some of the 2012 instabilities or do we need other mechanisms?

- **Case: LOF < 0**
- One FT instability compatible with the impedance model in Y plane.
- Some instabilities occurred at high current with both damper on and off -> Not explained by impedance only (Coupling? ADT trip? Q’’?)
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?

DELPHI prediction are inaccurate for $Q' < 2$.

- Can be partially improved with appropriate damper transfer function.
- **Rise time vs chromaticity at injection** studies can give more info on this issue.
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• **Can we explain the instabilities observed in 2016 with few bunches for the high beta run?**
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

- Low intensity run: few bunches with Nb~0.8e11 in 1um.
- Very close settings with TCP -> 2 sigma, for background cleaning improvement
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

- Low intensity run: few bunches with Nb~0.8e11 in 1um.
- Very close settings with TCP -> 2 sigma, for background cleaning improvement.

Example: B1H Fill 5146

Example: B1H Fill 5284
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

Close TCP.D6[L/R]7 → Visible impact on expected tune shift (w/o damper)
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

- Instability induced by very close TCP collimators.
- Reasonable good agreement with models.

More details in D.Amorim 26-09-2016 HSC talk
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

- Few instabilities occurred also with RP deeply in (2.5sigma).
- Updated the impedance database with available models.
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

- With a current of 470 A we would predict stability $\rightarrow \sim \text{factor 2 discrepancy}$!
- Possible explanations:
 - Different **emittance value** from BSRT (lower) and wirescanner (larger emittance) \rightarrow Almost a factor 2 difference.
 - **Rough impedance model of RP**.

\[
\text{Octupole current threshold [A]} \\
\begin{array}{cc}
\text{LHC ft High beta, gaussian} \\
\text{LHC ft High beta, parabolic}
\end{array}
\]
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
Can we explain the 2016 beam stability of bunches of \(\sim 1.9\times10^{11} \) p/b within \(\sim 1.5 \) μm?

- Predicted ~320 A, but unstable at 470 A. The factor 1.4 is not yet understood.
Outline

- How good is the transverse impedance model?
- Could it explain some of the 2012 instabilities or do we need other mechanisms?
- Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
- Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
- Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
- Do we have some margin?
- Remaining questions to be answered / studies to be performed?
Do we have some margin?

- **Present model** with CFC collimators at 7.5s, $Q' = 10$ with 100 turns damper
 - $Nb \; 1.2e11$ in 2um -> **120 A predicted, 450 A margin**
 - $Nb \; 2.2e11$ in 2um -> **240 A predicted, 330 A margin**

- Accounting for a **factor 1.5 from the High Brightness MD**
 - $Nb \; 1.2e11$ in 2um -> **180 A predicted, 380 A margin**
 - $Nb \; 2.2e11$ in 2um -> **360 A predicted, 210 A margin**

- Accounting for a **factor 1.5 from the High Brightness MD, and 1.3 for 6.5s collimator settings in IP7:**
 - $Nb \; 1.2e11$ in 2um -> **230 A predicted, 336 A margin**
 - $Nb \; 2.2e11$ in 2um -> **460 A predicted, 110 A margin**
Outline

• How good is the transverse impedance model?
• Could it explain some of the 2012 instabilities or do we need other mechanisms?
• Was it an issue to run with very small chromaticities (sometimes negative) during the first part of the year?
• Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
• Can we explain the 2016 beam stability of bunches of ~ 1.9E11 p/b within ~ 1.5 μm?
• Do we have some margin?
• Remaining questions to be answered / studies to be performed?
Remaining questions to be answered / studies to be performed?

- **Collimator impedance:**
 - Address collimator discrepancy between model and measurements with **tune shift scan with gradual decreasing collimator gap** (8 -> 6 sigma).
 - Repeat the **TCSGs at 6.5 sigma** to improve measurement quality.
 - **RP impedance** with tune shift measurement versus gap.
Remaining questions to be answered / studies to be performed?

- **Collimator impedance:**
 - Address collimator discrepancy between model and measurements with **tune shift scan with gradual decreasing collimator gap** (8 -> 6 sigma).
 - Repeat the **TCSGs at 6.5 sigma** to improve measurement quality.
 - **RP impedance** with tune shift measurement versus gap.

- **Impedance model accuracy at Q’<2:**
 - **Rise time** and **octupole threshold** at injection versus Q’.
Remaining questions to be answered / studies to be performed?

- **Collimator impedance:**
 - Address collimator discrepancy between model and measurements with **tune shift scan with gradual decreasing collimator gap** (8 -> 6 sigma).
 - Repeat the **TCSGs at 6.5 sigma** to improve measurement quality.
 - **RP impedance** with tune shift measurement versus gap.

- **Impedance model accuracy at Q’<2:**
 - **Rise time** and **octupole threshold** at injection versus Q’.

- **Total impedance budget:**
 - Measurement of **tune shift versus intensity** (with new ADT system)
 - Continuation of **bunch by bunch tune shift** measurements.
 - **TMCI measurements** with pushed collimator settings (5e11 at nominal): could give further information also on stability of high brightness bunches.
Remaining questions to be answered / studies to be performed?

• **Collimator impedance:**
 • Address collimator discrepancy between model and measurements with **tune shift scan with gradual decreasing collimator gap** (8 -> 6 sigma).
 • Repeat the **TCSGs at 6.5 sigma** to improve measurement quality.
 • **RP impedance** with tune shift measurement versus gap.

• **Impedance model accuracy at Q’<2:**
 • **Rise time** and **octupole threshold** at injection versus Q’.

• **Total impedance budget:**
 • Measurement of **tune shift versus intensity** (with new ADT system)
 • Continuation of **bunch by bunch tune shift** measurements.
 • **TMCI measurements** with pushed collimator settings (5e11 at nominal):
 could give further information also on stability of high brightness bunches.

• **General questions:**
 • Studies of **instability developing on scraped bunches**.
 • **Effect of new elements to be included in the model:** Injection kickers,
 geometrical impedance of RP, new experimental beam pipes.
 • Address the **2-beam impedance impact**.
Thanks for your attention!
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?
Can we explain the 2016 beam stability of bunches of $\sim 1.9E11$ p/b within $\sim 1.5 \mu$m?

- Fills 5367, 5368 with few bunches of high brightness ($\sim 1.9e11$ in 1.5μm)
- Instability on higher intensity ones

NB: Only return signal when in saturation!
Can we explain the 2016 beam stability of bunches of \(~1.9 \times 10^{11}\) p/b within \(~1.5\ \mu\text{m}\)?
Can we explain the 2016 beam stability of bunches of $\sim 1.9 \times 10^{11}$ p/b within $\sim 1.5 \mu$m?
Remaining questions to be answered:
Instabilities after preceding beam losses

- The instability starts when going in with the secondaries to **6.5 sigma** after having set the D4L7 already at 6 sigma.
- **No instability** observed only with primaries at 4.5 sigma.
- Octupoles at 470A.
• **Stability threshold at ~ 200 A** (factor 2 discrepancy to be understood).
Possible explanation

• The beams underwent already emittance growth/ intensity loss from injection.
• B1 suffered more than B2.
• The abort-gap cleaning is acting at 1Hz on the beam, heavily seen in V plane (same of instability) for 10’.
Possible explanation

- The beams underwent already emittance growth/ intensity loss from injection.
- B1 suffered more than B2.
- The abort-gap cleaning is acting at 1Hz on the beam, heavily seen in V plane (same of instability) for 10’

Our models are normally appropriate for clean bunches: need to develop approaches also for this kind of events.
Can we explain the instabilities observed in 2016 with few bunches for the high beta run?

Possible explanations:
• Emittance from BSRT lower than wirescanner: 0.5 um gives a factor 2 in octupole threshold.
• Impedance model may be underestimating the geometrical part.
Can we explain the 2016 beam stability of bunches of \(\sim 1.9 \times 10^{11} \) p/b within \(\sim 1.5 \mu \text{m} \)?

- Emittance from BSRT looks smaller (\(\sim 1.2 \mu \text{m} \)) but cannot completely explain the instability.