

Cold and Hot Medium Effects on

Quarkonium production in p-Pb collisions

```
Baoyi Chen (陈保义),
Tianjin University
```

```
30 March-April 1,2017, FCPPL, Peking University
```

```
Collaborators: Tiecheng Guo (Tsingua U.)

Pengfei Zhuang (Tsinghua U.)

Yunpeng Liu (Tianjin U.)
```

Reference: Phys.Lett. B765 (2017) 323-327

Outline

- Charmonium proposed as a probe for the deconfined matter ----- Quark Gluon Plasma (QGP)
- 2. **Cold** and **Hot** Medium effects in transport model, including color screening and parton inelastic scatterings on charmonium.
- 3. Charmonium suppression by cold and Hot medium effects in p-Pb collisions at 5.02 TeV
- 4. Summary about charmonium in p-Pb

Heavy quarkonium can survive in hadron gas, its abnormal suppression is an existence of QGP

J/psi as a probe for QGP, T. Matsui, H. Satz, 86'

 χ_{c}

 χ_c

Ψ'

ψ,

 J/Ψ

 J/Ψ

 J/Ψ

Sequential suppression

More Obvious in p-Pb

QGP temperature (LHC) \sim 0.3-0.5 GeV, Charmonium survive in hadron gas

Kharzeev, Satz, 94'

Heavy ion collisions

- In Pb-Pb (or Au-Au) collisions, Quark Gluon Plasma can be produced in the early stage of collisions,
 →strong suppression of J/psi and psi(2S) yields, Well described by Transport models (Tsinghua, TAMU), Coalescence Model...
- In p-Pb, with <u>small system</u> but <u>high colliding energy</u>, Hot medium Still exist?

V = U

State	$J/\psi(1S)$	$\chi_c(1P)$	$\psi'(2S)$	Υ(1 S)	$\chi_b(1P)$	$\Upsilon(2S)$	$\chi_b(2P)$	$\Upsilon(3S)$
T_d/T_c	2.10	1.16	1.12	>4.0	1.76	1.60	1.19	1.17

Transport model

Yunpeng Liu, et al, PLB 11'; Baoyi Chen, PRC 16'

$$\frac{\partial f_{\psi}}{\partial t} + \frac{\vec{p}_{\psi}}{F} \cdot \vec{\nabla}_{x} f_{\psi} + \vec{F} \cdot \vec{\nabla}_{p} f_{\psi} = -\alpha_{\psi} f_{\psi}$$

 $J/\psi + g \rightarrow c + \bar{c}$ And Color screening

$$\alpha_{\psi}\left(\vec{p}_{t},\vec{x}_{t},\tau,\vec{b}\right) = \frac{1}{2E_{t}} \int \frac{d^{3}\vec{k}}{(2\pi)^{3}2E_{g}} \sigma_{g\psi}\left(\vec{p},\vec{k},T\right) 4F_{g\psi}\left(\vec{p},\vec{k}\right) f_{g}(\vec{k},T)$$

Cold nuclear matter effects included here

Initial distribution from pp collisions

$$\frac{d^2\sigma_{pp}}{dyp_Tdp_T} = \frac{(n-1)}{\pi(n-2) < p_T^2 >_{pp}} (1 + \frac{p_T^2}{(n-2) < p_T^2 >_{pp}})^{-n} \frac{d\sigma_{pp}}{dy}$$

$$R_{AA}^{J/\psi} = \frac{N_{AA}^{J/\psi}}{N_{pp}^{J/\psi}N_{coll}} \xrightarrow{} J/\psi \text{ production in AA collisions}$$

$$(with cold and hot matter effects)$$

$$J/\psi \text{ production in pp collisions}$$

$$(without CNM and HM)$$

The relation RAA<1 or RAA>1 indicates cold and hot nuclear matter effects.

Hydrodynamic equations for QGP evolution: $\partial_{\mu}(T^{\mu\nu}) = 0 \\ T^{\mu\nu} = (e+p)u^{\mu}u^{\nu} - g^{\mu\nu}p$ Hot medium effects $\frac{\partial^{\mu}(T^{\mu\nu})}{\partial GP} = 0$ Initially produced J/ ν anomalous suppression $\frac{\partial^{\mu}(T^{\mu\nu})}{\partial GP} = 0$ The medium effects $\frac{\partial^{\mu}(T^{\mu\nu})}{\partial GP} =$

Cold nuclear matter effects: Xianglei Zhu, et al, PLB 05'

shadowing effect (parton distribution is affected by other nucleons), Cronin effect (parton multi-scatterings with other nucleons, increase charmonium transverse momentum) \rightarrow change $< p_T^2 >_{pp}$

- 1. happens **Before** the formation of QGP
- 2. They are almost the same for different charmonium states
- Hot nuclear matter effect:

color screening (in deconfined matter, QGP) particle inelastic scatterings

Both of them are different for J/ψ and Psi(2S). Gives different RAA

Black and blue lines: transport model with cold and hot medium effects

Shadow region: JHEP 1511, 127(2015) only cold nuclear matter effect

This gives the same suppression for J/ψ and psi' can not explain the data.

Difference of J/ψ and psi' R_{pA} indicates the <u>final state interaction</u> Hadron gas? QGP?

Black and blue lines: transport model with cold and hot medium effects

- 1. J/ψ Eigenstate suffer weak suppression in p-Pb, Td(J/psi) ~ 2Tc
- 2. 1P and 2S suppression is similar: <u>almost</u> the same Td

Shadow region: JHEP 1511, 127(2015) only cold nuclear matter effect

This gives the same suppression for J/ψ and psi' can not explain the data.

Difference of J/ψ and psi' R_{pA} indicates the <u>final state interaction</u> Hadron gas? QGP?

Final prompt J/psi : 60% from direct, (30%, 10%) from (1P, 2S) decay

$$\begin{split} R_{pA}^{\psi\prime} &= R_{pA}^{cold} R_{pA}^{hot} \\ R_{pA}^{J/\psi} &= 0.6 R_{pA}^{cold} + 0.4 R_{pA}^{\psi\prime} \end{split}$$

Estimate at Backward Rapidity (y<0)

$$R_{pA}^{\psi\prime}=R_{pA}^{cold}R_{pA}^{hot}pprox 1.1 imes {f 0.5}^{Hot\ supp.}$$
 $R_{pA}^{J/\psi}=0.6R_{pA}^{cold}+0.4R_{pA}^{\psi\prime}$

 $= 0.6 \times 1.1 + 0.4 \times R_{nA}^{\psi \prime} \approx 0.88$

- 1. J/ψ suppression mainly from Cold nuclear matter effect, and hot medium effect on psi' (which decays into J/psi)
- 2. Both cold and hot medium is important for psi', HNM suppress ~50% of the psi(2S)
- 3. Good description of $R_{pA}(p_T)$ for both J/ψ and psi' in Forward rapidity

Why? → 1P suppression not strong?

Transitions between 1S and 2S?

(arXiv:1612.02089)

Overestimate the J/psi suppression at Ncoll~12 and pT ~ 1GeV/c

Difficulties at backward rapidity:

- 1. Cold nuclear matter effect seems enough for J/ψ , see dashed line.
- 2. But stronger suppression of psi(2S) indicates the final state interactions with QGP (or Hadron Gas). This additional suppression will result in stronger suppression of J/psi and psi(2S) at the same time.

J/psi and psi(2S) pT-square

Prediction for psi(2S)

1. Within the picture of J/psi and psi(2S) suppressed by hot medium,

charmonium with Larger pT can escape from the Hot Medium (Leakage effect)

AND

Hot Medium effect is Stronger for psi(2S) than for J/ψ , which makes psi(2S) $< p_T^2 >$ larger than J/psi.

J/psi and psi(2S) pT-square

Discussion

- Blue line is a qualitative prediction, the exact value depends on:
 - 1) the temperature and volume of hot medium in pA collisions,
 - 2) J/ψ and psi(2S) **formation time** from heavy quark dipole to charmonium eigenstate
 - 3) inelastic cross section between charmonium and hot medium, etc.

But the behavior of <u>Blue line > Black line</u> stands in this "Cold +Hot" medium scenario.

Summary

• We employ the Transport model (widely used in AA collisions, and give good explanation of experimental data from RHIC to LHC), including both cold and hot medium effects on J/ψ and $\psi(2S)$, to give the

$$J/\psi$$
 and $\psi(2S)$ $R_{pA}(y)$, $R_{pA}(p_T)$, $R_{pA}(N_{coll})$

- \checkmark We find that the hot medium effect is especially important to explain the ψ(2S) stronger suppression compared with J/ψ.
- ✓ Based on this, we predict a larger $< p_T^2 >$ of ψ(2S) than J/ψ due to stronger hot medium effects on ψ(2S).

Reference: Phys.Lett. B765 (2017) 323-327

supplement

The initial size of Quark-Gluon-Plasma produced in p-Pb collisions

 J/ψ as a probe of QGP:

 J/ψ suffere color screening end inelastic collisions of partons in QGP

$$R_{AA}^{J/\psi} = \frac{N_{AA}^{J/\psi}}{N_{pp}^{J/\psi}N_{coll}}$$
 — \rightarrow **J/** ψ production in AA collisions (with cold and hot matter effects) \rightarrow **J/** ψ production in pp collisions (without CNM and HM)

The relation RAA<1 or RAA>1 indicates cold and hot nuclear matter effects.

