Energy dependence of direct-quarkonium production in pp collisions from fixed-target to LHC energies:complete one-loop analysis

> Yu Feng Third Military Medical University

FCPPL Quarkonium Production Workshop March 30, 2017, Peking University Based on our work: Eur.Phys.J.C(2015)75:313, Y.Feng, J.P.Lansberg, J.X.Wang

Why is it important to know how low- P_T quarkonia are produced

- If color is bleaching at short distance (Color Singlet Model), low- P_T quarkonia can be used to extract the distribution of linearly polarized gluon in unpolarized protons, $h_1^{\perp g}(x, k_T, \mu)$
- Different nuclear suppression depending on how the pair hadronizes
- Saturation effects depend on the color state of the propagating pair
- Most of the proton-nucleus and nucleus-nucleus collision data lie at $P_T \lesssim m_{\cal Q}$
- In the QGP, do quarkonia behave more like colorful gluons or colorless photons?

Why is it important to know how low- P_T quarkonia are produced

Also because, some very high P_T quarkonia which we study can be as rare as a few millionth of the produced quarkonia

Most probably the production of a Υ with $P_T = 90$ GeV, even also 20GeV, has very few things to do with the bulk of Υ

3 / 20

Basic pQCD approach: the Color Singlet Model(CSM)

- Perturbative creation of 2 quarks Q and \overline{Q}
 - in a color singlet state
 - with a vanishing relative momentum
- Non-perturbative binding of quarks

• Large QCD corrections from new topologies reduce the gap with data at mid and large P_T (Subject for a separate seminar)

Basic pQCD approach: the Color Singlet Model(CSM)

- Perturbative creation of 2 quarks Q and \overline{Q}
 - in a color singlet state
 - with a vanishing relative momentum
- Non-perturbative binding of quarks

• Large QCD corrections from new topologies reduce the gap with data at mid and large P_T (Subject for a separate seminar)

The LO CSM accounts for the P_T -integrated yield

S.J.Brodsky and J.P.Lansberg, PRD 81, 051502, 2010; JPL,Pos(ICHEP 2010),206(2010);NAP 910-911(2013)470

The yield vs. \sqrt{s} , y

• Good agreement with RHIC, Tevatron and LHC data

Unfortunately, very large theory uncertainties: masses, scales(μ_R, μ_F), gluon PDFs at low x and Q², ...

• Earlier claims that CSM contribution to $d\sigma/dy$ was small were based on the incorrect assumption that χ_c feed-down was dominant

NLO CSM at RHIC

S.J.Brodsky and J.P.Lansberg, PRD 81 051502, 2010.

 J/ψ and Υ

NLO CSM at RHIC

S.J.Brodsky and J.P.Lansberg, PRD 81 051502, 2010.

 J/ψ and Υ

Perform good!

NLO NRQCD up to RHIC

Available online at www.sciencedirect.com

PHYSICS LETTERS B Table 1

www.ebsysier.com/locate/shysleth

Physics Letters B 638 (2006) 202-208

Analysis of charmonium production at fixed-target experiments in the NRQCD approach

F. Maltoni *, J. Spengler *, M. Bargiotti *, A. Bertin *, M. Bruschi *, S. De Castro *, L. Fabbri *, P. Faccioli *, B. Giacobbe *, F. Grimaldi *, I. Massa *, M. Piccinii *, N. Semprini-Cesari *, R. Spighi *, M. Villa *, A. Vitale *, A. Zoncoli ** Reference NRQCD matrix elements for charmonium production. The colorsinglet matrix elements are taken from the potential model calculation of [14, 15]. The color-octet matrix elements have been extracted from the CDF data [16] in Ref. [17]

Н	$\langle \mathcal{O}_1^H \rangle$	$\langle \mathcal{O}_8^H[{}^3S_1] \rangle$	$\langle \mathcal{O}_8^H [{}^1S_0^{(8)}]\rangle = \langle \mathcal{O}_8 [{}^3P_0^{(8)}]\rangle / m_c^2$
J/ψ	1.16 GeV ³	$1.19\times 10^{-2}~{\rm GeV^3}$	$1.0 \times 10^{-2} \text{ GeV}^3$
$\psi(2S)$	0.76 GeV ³	$0.50 \times 10^{-2} \text{ GeV}^3$	$0.42 \times 10^{-2} \text{ GeV}^3$
χ _c 0	0.11 GeV	$0.31 \times 10^{-2} \text{ GeV}^3$	-

Analysis based on the hard partonic cross sections computed at NLO in

A.Petrelli, M.Cacciari, M.Greco, F.Maltoni and M.L.Mangano, Nucl.Phys.B 514(1998)245

• At α_s^2 , one only has CO contributions (\rightarrow virtual correction at α_s^3):

 $2 \rightarrow \ 1 \ \text{processes:} \ q + \bar{q} \rightarrow \ Q\bar{Q}[{}^3S_1^{[8]}] \ \text{and} \ g + g \rightarrow \ Q\bar{Q}[{}^1S_0^{[8]}, {}^3P_{J=0,1,2}^{[8]}]$

• At α_s^3 , one has in addition real emissions (including one CS process) $g + g \rightarrow Q\bar{Q}[{}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J=0,2}^{[8]}] + g,g + q(\bar{q}) \rightarrow Q\bar{Q}[{}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J=0,2}^{[8]}] + q(\bar{q}).$ $q + \bar{q} \rightarrow Q\bar{Q}[{}^{1}S_{0}^{[8]}, {}^{3}S_{1}^{[8]}, {}^{3}P_{J}^{[8]}] + g \text{ and } g + g \rightarrow Q\bar{Q}[{}^{3}S_{1}^{[1]}] + g$

Done with NRQCD LDMEs fitted at LO on P_T spectra from CDF(≃ 2TeV)
C

NLO NRQCD up to RHIC II

- Good fit but with ten times less CO than expected from Tevatron $d\sigma/dP_T$ data
- CSM could describe the data alone (no uncertainty on CS shown; no surprise: se)
- No similar analysis for Υ
- Never done for $\sqrt{s} > 200 \text{ GeV}$
- Never update with LDMEs fitted at NLO

What we did Y.Feng, J.P.Lansberg, J.X.Wang, EPJC(2015)75:313

We used

- FCD* after complete cross-check of the Petrelli *et al.* results *FDC J.-X.Wang, Nucl.Instrum.Meth.A 534(2004) 241
- only direct J/ψ , $\psi(2S)$ and $\Upsilon(1S)$ yields
- Nota: in principle, we can also predict total-yield polarisation
- an updated data set with:
 - $\bullet\,$ only pp and $p\overline{p}$ data with more than 100 events (no pA data), only for y=0
 - CDF results after a small P_T extrapolation from 1.5 GeV to 0
 - LHC data
- constant feed-down (FD) fractions

•
$$F_{J/\psi}^{direct} = 60 \pm 10$$

- $F_{\Upsilon(1S)}^{direct} = 66 \pm 6$
- $F_{\Upsilon(1S+2S+3S)}^{direct} = 60 \pm 10$
- Uncertainty on *F^{direct}* combined in quadrature with that of data

What we did II

We used LDMEs fitted at NLO/one loop on the P_T spectra

-	Ref.	$\langle O_{J/\psi} ({}^{3}P_{0}^{[8]})$	$\langle \mathcal{O}_{J/\psi}({}^{1}S_{0}^{[8]})\rangle$	$\langle \mathcal{O}_{J/\psi}({}^{3}S_{1}^{[8]})\rangle$			
		(in GeV ⁵)	(in GeV ³)	(in GeV ³)			
- 1/a/	YQ.Ma, et al. PRL 106 (2011) 04200	02 2.1 × 10 ⁻	⁻² 3.5 × 10 ⁻	$2 5.8 \times 10^{-3}$			
• J/ψ	B.Gong, et al. PRL 110(2013) 042002	-2.2 × 10	$^{-2}$ 9.7 × 10 ⁻¹	2 -4.6 × 10 ⁻³			
-	M.Butenschoen, B.Kniehl. PRD84(2011)0	51501 -9.1 × 10	$^{-3}$ 3.0 × 10 ⁻¹	2 1.7 × 10 ⁻³			
	Ref.	$\langle \mathcal{O}_{\psi(2S)}({}^{3}P_{0}^{[8]})\rangle$	$\langle \mathcal{O}_{\psi(2S)}({}^{1}S_{0}^{[8]})\rangle$	$\langle \mathcal{O}_{\psi(2S)}({}^{3}S_{1}^{[8]})\rangle$			
		(in GeV ⁵)	(in GeV ³)	(in GeV ³)			
-	B.Gong, et al. PRL 110(2013) 042002	9.5×10^{-3}	-1.2×10^{-4}	3.4×10^{-3}			
• $\psi(25)$	YQ.Ma, et al. PRL 106 (2011) 042002	$-4.8 imes 10^{-3}$	2.9×10^{-2}	0			
φ(=•)		7.9×10^{-3}	5.6×10^{-3}	3.2×10^{-3}			
-		1.1×10^{-2}	0	$3.9 imes 10^{-3}$			
-	Ref.	$\langle \mathcal{O}_{\Upsilon(1S)}(^{3}P_{2}^{[1]})$	$(\mathcal{O}_{\Upsilon(1S)})$ $\langle \mathcal{O}_{\Upsilon(1S)} \rangle$	$\langle \mathcal{O}_{\Upsilon(1S)}(^{3}S_{1}^{[8]}) \rangle$			
O(1 C)		(in GeV ⁵)) (in GeV ³	$(in \text{ GeV}^3)$			
• 1(15)	B.Gong, et al. PRL 112 (2014) 3, 03	$-13.6 \times 10^{-13.6}$	$^{-2}$ 11.2 × 10	-2 -4.1×10^{-3}			
[For J/ψ , we have also added the fit of G.T.Bodwin, <i>et al.</i> , PRL 113,022001(2014) even							
though it is based on a fragmentation function approach]							

Results for the J/ψ

- First 2 fits: 10 times above the data around 200 GeV -as Maltoni et al.
- dy|_{v=0} × Br (nb The third fit - which has the lowest P_T^{min} -overshoots the least ξ
- The third fit is however the only which does not account for the polarisation data
- Weird energy behaviour of Ma's fit, due to ${}^{3}P_{I}^{[8]}$ channel - we'll come back to that later

- The CS component alone does a pretty good job, even excellent in the TeV range
- Taken at face value, these results show a clear violation of NRQCD universality

Results for the $\psi(2S)$ and Υ

For $\psi(2S)$

- Worse than for J/ψ
- CSM even tends to overshoot at large \sqrt{s} yet in agreement within uncertainties(lower panel)
- CO dominated by the ³P_j^[8] channel which nearly shows an unphysical behavior

For $\Upsilon(1S)$

- Reasonable trend for Υ
- CSM is doing a perfect job in the TeV range - note that the RHIC points moved down
- On the other hand, CO needed at low √s ? High x gluon pdf

<ロト < 回 ト < 巨 ト < 巨 ト ミ の < で 12 / 20

CSM at one loop

In the previous analysis, the CS contribution to ${}^{3}S_{1}$ production was only appearing as a real-emission QCD correction at α_{s}^{3} If we switch off the CO channels - or believe they are negligible-, the tree-level/LO contribution for direct J/ψ is at α_{s}^{3} In fact, the total yield at one loop (up to α_{s}^{4}) can be computed since 2007

J.Campbell, F.Maltoni, F.Tramontano, PRL98:25200, 2007

One can repeat this for 1S_0 production for which we have closed-form results for the hard part at one loop (Nucl.Phys.B 514(1998)245) We checked these with FDC

CSM at one loop: Results

- Same weird energy behavior as observed for the ${}^{3}P_{J}^{[8]}$ channel (and to a less extent for ${}^{1}S_{0}^{[8]}$ channel)
- Non negative cross sections at large \sqrt{s} only for $\mu_R > \mu_F$?
- Is it due to ISR, FSR ? Is NRQCD simply not holding at low P_T ?

CSM at one loop for ${}^{1}S_{0}$

- At LO, η_Q production occurs without final-state gluon emission
- Empirical way to see if the pathological energy behavior of both CO and CS for ${}^{3}S_{1}$ may be due to final state emissions, typical of quarkonium production
- Colse-form results for the hard part at one loop exit [Nucl.Phys.B 514(1998) 245]

CSM at one loop for ${}^{1}S_{0}$

- At LO, η_Q production occurs without final-state gluon emission
- Empirical way to see if the pathological energy behavior of both CO and CS for ${}^{3}S_{1}$ may be due to final state emissions, typical of quarkonium production
- Colse-form results for the hard part at one loop exit [Nucl.Phys.B 514(1998) 245]
- Same happens with the ${}^{1}S_{0}^{[8]}$
- No sign of negative terms in the TMD factorization approach up to one loop

Basics of the Color Evaporation Model

• Based on Quark-Hadron duality argument, one writes

$$\sigma_{Q}^{(N)LO, \text{ direct}} = F_{Q}^{\text{direct}} \int_{2m_{Q}}^{2m_{H}} \frac{d\sigma_{Q\bar{Q}}^{(N)LO}}{dm_{Q\bar{Q}}} dm_{Q\bar{Q}}$$

• Using a simple statistical counting

 $\left[\sum_{i} \text{ runs over all the charmonium states below the } D\bar{D} \text{ threshold}\right]$

J.F.Amundson, et al. PLB 372 (1996)

$$F_{J/\psi}^{ ext{direct}} = rac{1}{9} rac{2J_{\psi} + 1}{\sum_i (2J_i + 1)} = rac{1}{45}$$

 \bullet Romaona Vogt's fits roughly give the same number for direct $J/\psi's_{\rm R.Vogt\ et\ al.,hep-ph/0311048}$

NRQCD Ersatz of the CEM

• In 2005, Bodwin,Braaten and Lee derived relations between NRQCD LDMEs provided that the CEM is interpreted as part NRQCD

G.T.Bodwin, E.Braaten, J.Lee, PRD72(2005) 014004

- These violate the velocity scaling rules, and also violated by the NLO fits.
- At LO in v, one has

$$\begin{split} \langle \mathcal{O}_{3S_1}(^3S_1^{[1]})\rangle &= & 3\times \langle \mathcal{O}_{3S_1}(^1S_0^{[1]})\rangle, \\ \langle \mathcal{O}_{3S_1}(^1S_0^{[8]})\rangle &= & \frac{4}{3}\times \langle \mathcal{O}_{3S_1}(^1S_0^{[1]})\rangle, \\ \langle \mathcal{O}_{3S_1}(^3S_1^{[8]})\rangle &= & 4\times \langle \mathcal{O}_{3S_1}(^1S_0^{[1]})\rangle. \end{split}$$

• If, as it should be in NRQCD, $\langle \mathcal{O}_{3S_1}({}^{3}S_1^{[1]}) \rangle$ is the usual CS LDME, *i.e.* $\frac{2N_C}{4\pi} (2J+1) |R(0)|^2$, everything is fixed

CEM results

- NRQCD-like CEM badly overshoots the data
 - Expected since CO LDMEs are as large as the CS, whereas the hard parts tend to be larger.
 - Weird energy behavior

CEM results

- NRQCD-like CEM badly overshoots the data
 - Expected since CO LDMEs are as large as the CS, whereas the hard parts tend to be larger.
 - Weird energy behavior

• Conventional CEM does a pretty good job

- No th. uncertainty shown
- "natural" value of $F_{J/\psi}^{direct}$ is ok

Conclusion

- The first full analysis for $d\sigma/dy|_{y=0}$ vs. \sqrt{s} at one-loop both in NRQCD and CSM.
- NRQCD: Overshot the data.
- CSM: LO is pretty good, NLO presents unphysical behavior
- CEM: Conventional CEM does a pretty good job

NLO analysis for CSM alone

Thank you!

<ロト < 部 > < 注 > < 注 > 注) Q (C 20 / 20