All-Heavy Tetraquarks

Jean-Marc Richard

Institut de Physique Nucléaire de Lyon Université de Lyon–IN2P3-CNRS Villeurbanne, France

Beijing, Peking University, April 1st, 2017

JMR

Table of contents

- 2 Chromoelectric limit
- Improved chromoelectric binding
- 4 Chromomagnetic binding

Based on recent work with J. Vijande, A. Valcarce, older work with Cafer Ay et Hyam Rubinstein and ongoing work with Emiko Hiyama, Makoto Oka and Atsushi Hosaka.

History	Chromoelectric limit	Improved chromoelectric binding	Chromomagnetic binding	Summary
History				

- $(Q_1 Q_2 \overline{Q}_3 \overline{Q}_4)$: many speculations
- Encouraged by the success of quarkonium and quarkonium-like (*XYZ*) spectroscopy
- Can we get a bound or resonant double quarkonium?
- (ccccc), (bcccc), (bbccc), ...
- Exp. J/ψ trigger seems easier
- Th. How well can we extrapolate quarkonium dynamics to higher configurations
- New colour substructures, 3- or 4-body forces, etc.
- A wave of encouraging results on the possibility of (cccc) or (bbbb), Vary, Karliner et al. Bai et al., Zhu et al., etc.
- Critically examined int he case of constituent models (Valcarce, Vijnade, R., PRD in press)

< D > < P > < E > <</pre>

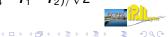
• • • • • • • • • • • •

Chromoelectric limit

- Chromomagnetic terms $\propto (m_i m_j)^{-1}$ less important in the heavy quark sector
- Simplest chromoelectric prototype in the literature

$$H = \sum \frac{\boldsymbol{p}_i}{2 \, m_i} - \frac{16}{3} \sum \tilde{\lambda}_i . \tilde{\lambda}_j \, \boldsymbol{v}(\boldsymbol{r}_{ij}) \; ,$$

- with 2-body forces and colour as a global operator
- where v(r) is the quarkonium potential
- has some analogy with 4-unit-charges systems in QED


$$H = \sum rac{oldsymbol{p}_i}{2 m_i} + \sum oldsymbol{e}_i \, oldsymbol{e}_j / oldsymbol{r}_{ij} \; .$$

Chromoelectric limit-2

- Striking mass dependence, $(QQ\bar{q}\bar{q})$ favored in the CE limit, $(M^+M^+m^-m^-)$ more stable than $(m^+m^+m^-m^-)$
- $(M^+m^+M^-m^-)$ unstable in QED if $M/m \gtrsim 2.2$
- Naive CE limit and QED differ in the equal-mass case
 - $(e^+e^+_-e^-e^-) = Ps_2$ stable (Wheeler, Hylleraas and Ore, ...)
 - $(QQ\bar{Q}\bar{Q})$ unstable in serious 4-body estimates in naive CE model.
- Delicate 4-body problem, as e.g., the tetraneutron
- Some approximations favor binding artificially, e.g.

$$a(r_{12}^2 + r_{34}^2) + b \sum_{\substack{i=1,2\\ j=3,4}} r_{ij}^2 = \begin{cases} (a+b)(x^2+y^2) + 2\,b\,z^2(\text{exact})\\ (a)(x^2+y^2) + 2\,b\,z^2(\text{diquarks}) \end{cases}$$

if $\mathbf{x} = \mathbf{r}_2 - \mathbf{r}_1$, $\mathbf{y} = \mathbf{r}_4 - \mathbf{r}_3$ and $\mathbf{z} = (\mathbf{r}_3 + \mathbf{r}_4 - \mathbf{r}_1 - \mathbf{r}_2)/\sqrt{2}$

< ロ > < 同 > < 回 > < 回 > < 回 > <

More on symmetry breaking

- Role of symmetry breaking
- $\min(p^2 + x^2 + \lambda x) < \min(p^2 + x^2)$ in elementary QM
- $\min(H_{\text{even}} + H_{\text{odd}}) < \min H_{\text{even}}$
- $\min(M^+M^+m^-m^-) < \min(\mu^+\mu^+\mu^-\mu^-)$, $2\mu^{-1} = M^{-1} + m^{-1}$
- $(M^+M^+m^-m^-)$ and $(\mu^+\mu^+\mu^-\mu^-)$ have the same threshold

$$\frac{p_1^2}{2M} + \frac{p_2^2}{2M} + \frac{p_3^2}{2m} + \frac{p_4^2}{2m} + V = \left[\sum \frac{p_i^2}{2\mu} + V\right] + \left(\frac{1}{4M} - \frac{1}{4m}\right) \left[p_1^2 + p_2^2 - p_3^2 - p_4^2\right]$$

 $\Rightarrow \min(H_{C-\text{even}} + H_{C-\text{odd}}) < \min H_{C-\text{even}}$

and this explains why H_2 is more stable than Ps_2 .

JMR

< ロ > < 同 > < 回 > < 回 >

Breaking particle identity?

same reasoning?

$$\frac{p_1^2}{2M} + \frac{p_2^2}{2m} + \frac{p_3^2}{2M} + \frac{p_4^2}{2m} + V = \left[\sum \frac{p_1^2}{2\mu} + V\right] + \left(\frac{1}{4M} - \frac{1}{4m}\right) \left[p_1^2 + p_3^2 - p_2^2 - p_4^2\right]$$

- Thus $(M^+m^+M^-m^-)$ more stable than $(\mu^+\mu^+\mu^-\mu^-)$????
- No!
- Since symmetry breaking benefits more to $(M^+M^-) + (m^+m^-) !!!$
- But some kind of metastability below the other threshold, $(M^+m^-) + \text{c.c.}$
- In short (un)favorable symmetry breaking can (spoil) generate stability.

< ロ > < 同 > < 回 > < 回 >

More on the equal-mass case-2

- So far, asymmetry in the kinetic energy
- Similar for the potential energy

$$\mathcal{H} = \sum oldsymbol{p}_i/(2m) + \sum g_{ij} oldsymbol{v}(r_{ij}) \ , \quad \sum g_{ij} = 2 \ .$$

If g_{ij} are equal: highest energy, and, roughly speaking, the broader the distribution of g_{ij} , the lower the energy.

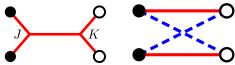
Now, if you compare Ps₂ and quark models: Ps₂ favored

(abcd) v(r)ģ Δg g_{ij} $\{0, 0, 1, 0, 1, 0\}$ Thr (1,3)+(2,4) - 1/r, r1/30.22 $Ps_2 -1/r$ $\{-1, -1, 1, 1, 1, 1, 1\}$ 1/3 0.89 $[(qq)_{\bar{3}}(\bar{q}\bar{q})_{3}] = -1/r, r = \{1/2, 1/2, 1/4, 1/4, 1/4, 1/4\}$ 1/3 0.01 $-1/r, r = \{-1/4, -1/4, 5/8, 5/8, 5/8, 5/8\}$ $[(qq)_6(\bar{q}\bar{q})_{\bar{6}}]$ 1/30.17

Mixing effects small

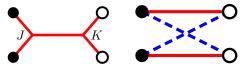
Improved chromoelectric model

- Based on the string model
- Linear confinement interpreted as



Not very visible in baryon spectroscopy as compared to

$$V_{\rm conf} = \frac{1}{2}(r_{12} + r_{23} + r_{31})$$

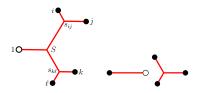

of the naive additive model.

• For tetraquarks, the minimum of

provides some extra attraction (Vijande et aL;, 2007, Bai et a 2017). The connected diagram alone binds for $M \gg m$.

Adiabaticity and color-mixing

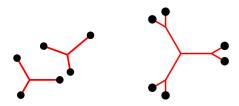
 The string potential corresponds to a Born-Oppenheimer treatment of the gluon field.

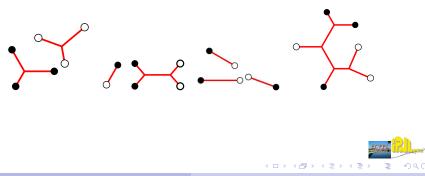

JMR

- With free rotations of the color wave function
- This is possible for $(bc\bar{b}\bar{c})$, not for $(bb\bar{b}\bar{b})$
- So the result by Bai et al corresponds to a fictitious (bb' bb') state with b' ≠ b, though same mass.

< □ > < 同 > < 回 > <

Higher configurations: pentaquark


 Same finding for pentaquark. In absence of constraints from antisymmetrization, pentaquark binding below the meson + baryon thresholds


Higher configurations: dibaryon

 Same finding for pentaquark. In absence of constraints from antisymmetrization, dibaryon binding below the baryon+ baryon thresholds

Higher configurations: baryonium

 Same finding for (3q, 3q
). In absence of constraints from antisymmetrization, at least for some mass configurations, binding below the various thresholds (baryon-antibaryon, 3 mesons, meson + tetraquark)

Chromomagnetic binding

• In the 70s, the hyperfine splitting between hadrons $(J/\psi - \eta_c, \Delta - N, \text{ etc.})$ explained à la Breit–Fermi, by a potential

$$V_{SS} = -A \sum_{i < j} rac{\delta^{(3)}(\boldsymbol{r}_{ij})}{m_i m_j} \, \lambda_i^{(c)} . \lambda_j^{(c)} \, \boldsymbol{\sigma}_i . \boldsymbol{\sigma}_j \; ,$$

a prototype being the magnetic part of one-gluon-exchange.

- Attractive coherences in the spin-color part: $\langle \sum \lambda_i^{(c)} . \lambda_j^{(c)} \sigma_i . \sigma_j \rangle$ sometimes larger for multiquarks than for the threshold.
- In particular (...) twice larger (and attractive) in the best (*uuddss*) as compared to Λ + Λ.

JMR

- But (δ⁽³⁾(*r_{ij}*)) much weaker for multiquarks than for ordinary hadrons, and needs to be computed. Hence uncertainties.
- Astonishing success with > 20 experiments on H and still lattice computations of H 40 years later!

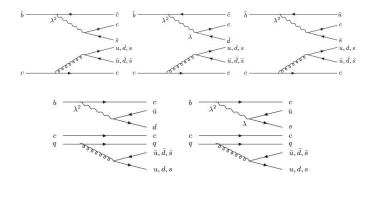
Chromomagnetic binding-2

- Other configurations found, such as the heavy P (Gignoux et al., Lipkin, 1987) (Qqqqq)
- Any correction repulsive: binding is not secured
- In particular SU(3)_F breaking
- Short-range factor $\langle \delta(\mathbf{r}_{ij}) \rangle$ borrowed from baryons
- The model was improved by Høgassen et al., and later by Stancu, Zhu et al., ...

$$\mathcal{H} = -\sum_{i < j} \mathcal{C}_{ij} \, \lambda_i^{(c)} . \lambda_j^{(c)} \, \boldsymbol{\sigma}_i . \boldsymbol{\sigma}_j \; ,$$

Cij tuned to qq, cq, cs, ... in ordinary hadrons

- Astonishing picture of the X(3872)
- Further studies, e.g., PKU
- b-sector, and/or all-heavy systems more problematic.
- as it requires interplay of chr.-elec. and magn. effects



Summary

- In charm sector, both chromoelecrric and magnetic effects to be included
- Naive chromoelectric model (additive with color factors) follow the trends of (+ + --) in QED
- But less favorable, due to the non-Abelian algebra of charges
- For non-identical quarks and antiquarks, string potential offers good opportunities
- The 4-body (and higher!) problem is delicate. The diquark-antidiquark approximation is antivariational, and thus might produce artificial binding.

Production of T_{cc} from B_c or Ξ_{bc}

Figs from the Roma group

