Central Exclusive Production of 2π and 4π systems

-an overview from an experimental physicist-

S. U. Chung

$B N L^{\dagger} /$ Upton, $N Y_{\dot{\alpha}}$ USA
Pusan National University, Busan, Korea
Uni. Heidelberg ${ }^{\beta}$ /Heidelberg, Germany TU(E18)/München and The Excellence Cluster Universe, ${ }^{\ddagger}$ Boltzmannstr. 2, D-85748, Garching, Germany
A. Austregesilo, TU/München \rightarrow JLab

Rainer Schicker, Heidelberg Univ.
J. H. Kang, Tae-Soo Kim, Yonsei Univ. (H.-Ch. Kim), J.-H. Yoon, INHA Univ.
T. Youn?, H. J. Kim ?, INHA Univ.

[^0]
Preliminary Remarks

- This talk is concerned with the physics aim of the COMPASS and ALICE experiments.

Preliminary Remarks

- This talk is concerned with the physics aim of the COMPASS and ALICE experiments.
- But the material given here does not contain the data from the COMPASS and ALICE experiments.

Preliminary Remarks

- This talk is concerned with the physics aim of the COMPASS and ALICE experiments.
- But the material given here does not contain the data from the COMPASS and ALICE experiments.
- This talk is mostly theoretical/phenomenological in nature.

Preliminary Remarks

- This talk is concerned with the physics aim of the COMPASS and ALICE experiments.
- But the material given here does not contain the data from the COMPASS and ALICE experiments.
- This talk is mostly theoretical/phenomenological in nature.
- However, this talk is given by an experimental physicist, i.e. the theory part is brief and necessarily rudimentary.

Preliminary Remarks

- This talk is concerned with the physics aim of the COMPASS and ALICE experiments.
- But the material given here does not contain the data from the COMPASS and ALICE experiments.
- This talk is mostly theoretical/phenomenological in nature.
- However, this talk is given by an experimental physicist, i.e. the theory part is brief and necessarily rudimentary.
- We shall define four reference frames-necessary for 2- to 3-body processes.

Plan of Talk

- Kinematics for Central Production: Two- to Three-Body Processes "Pomeron Physics and QCD,"
S. Donnachie, G. Dosch, P. Landshoff, O. Nachtmann

Cambridge University Press (2002)
"Central Exclusive Diffractive Production of 2π
in $p p$ and $\bar{p} p$ scattering within tensor Pomeron approach,"
P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, 054015(2016)
"Semiexclusive production of J / ψ mesons in proton-proton collisions with electromagnetic and diffractive dissociation of one of the protons," Anna Cisek, Wolfgang Schäfer, and Antoni Szczurek arXiv:1611.08210v1 [hep-ph]

24 Nov 2016

Plan of Talk

- Kinematics for Central Production: Two- to Three-Body Processes "Pomeron Physics and QCD,"
S. Donnachie, G. Dosch, P. Landshoff, O. Nachtmann

Cambridge University Press (2002)
"Central Exclusive Diffractive Production of 2π
in $p p$ and $\bar{p} p$ scattering within tensor Pomeron approach,"
P. Lebiedowicz, O. Nachtmann and A. Szczurek

Phy. Rev. D93, 054015(2016)
"Semiexclusive production of J / ψ mesons in proton-proton collisions with electromagnetic and diffractive dissociation of one of the protons," Anna Cisek, Wolfgang Schäfer, and Antoni Szczurek arXiv:1611.08210v1 [hep-ph] 24 Nov 2016

- Production Amplitudes:

Decay amplitudes for $X^{0} \rightarrow 2$-body $J \rightarrow s+\sigma$ where J, s and σ are the spins.

Plan of Talk

- Kinematics for Central Production: Two- to Three-Body Processes "Pomeron Physics and QCD,"
S. Donnachie, G. Dosch, P. Landshoff, O. Nachtmann

Cambridge University Press (2002)
"Central Exclusive Diffractive Production of 2π
in $p p$ and $\bar{p} p$ scattering within tensor Pomeron approach,"
P. Lebiedowicz, O. Nachtmann and A. Szczurek

Phy. Rev. D93, 054015(2016)
"Semiexclusive production of J / ψ mesons in proton-proton collisions with electromagnetic and diffractive dissociation of one of the protons," Anna Cisek, Wolfgang Schäfer, and Antoni Szczurek

$$
\text { arXiv:1611.08210v1 [hep-ph] } 24 \text { Nov } 2016
$$

- Production Amplitudes:

Decay amplitudes for $X^{0} \rightarrow 2$-body $J \rightarrow s+\sigma$ where J, s and σ are the spins.

- Conclusions and Future Prospects

The basic coordinate system:

The basic coordinate system:

The basic coordinate system:

Overall CM system

$\vec{a}+\vec{b}=0$
(\vec{a} along the z axis)
$\overrightarrow{p_{1}}+\vec{p}_{2}+\overrightarrow{p_{3}}=0$
(a plane going through the origin)
Three Euler angles needed to define the plane.

$$
\begin{aligned}
& d \phi_{3}(a+b \rightarrow 1+2+3)=\frac{4}{(4 \pi)^{5}}(d R)_{\mathrm{CM}}\left(\frac{1}{4 s}\right) d m_{13}^{2} d m_{23}^{2} \\
& d R=d \alpha(d \cos \beta) d \gamma
\end{aligned}
$$

There are four coordinate systems needed for the process $a+b \rightarrow 1+2+3$:

- The Detector system in the LAB (The first coordinate system). $\hat{z}=(0,0,1) \propto$ the beam direction

$$
\begin{aligned}
& \hat{y}=(0,1,0) \propto \text { vertical in LAB } \\
& \hat{x}=(1,0,0)=\hat{y} \times \hat{z}
\end{aligned}
$$

$$
\begin{aligned}
& d \phi_{3}(a+b \rightarrow 1+2+3)=\frac{4}{(4 \pi)^{5}}(d R)_{\mathrm{CM}}\left(\frac{1}{4 s}\right) d m_{13}^{2} d m_{23}^{2} \\
& d R=d \alpha(d \cos \beta) d \gamma
\end{aligned}
$$

There are four coordinate systems needed for the process $a+b \rightarrow 1+2+3$:

- The Detector system in the LAB (The first coordinate system).

$$
\begin{aligned}
& \hat{z}=(0,0,1) \propto \text { the beam direction } \\
& \hat{y}=(0,1,0) \propto \text { vertical in LAB } \\
& \hat{x}=(1,0,0)=\hat{y} \times \hat{z}
\end{aligned}
$$

- We stay in the overall CM frame, i.e. $\vec{a}+\vec{b}=0, \vec{a}=-\vec{b} \propto \hat{z}$ The plane defined by $\overrightarrow{p_{1}}+\overrightarrow{p_{2}}+\overrightarrow{p_{3}}=0$ where (β, α) stands for the normal (defined by $\hat{y}_{n} \propto \overrightarrow{p_{1}} \times \overrightarrow{p_{2}}$) to the reaction plan, i.e.

$$
\begin{aligned}
& \hat{z}_{n}=(-\sin \alpha, \cos \alpha, 0), \quad \text { this is the node } \\
& \hat{y}_{n}=(\sin \beta \cos \alpha, \sin \beta \sin \alpha, \cos \beta) \\
& \hat{x}_{n}=\hat{y}_{n} \times \hat{z}_{n}
\end{aligned}
$$

The vectors $\vec{p}_{i}, \quad(i=1,2,3)$, lie in the $x_{n}-z_{n}$ plane.
We define \vec{p}_{1} to be in this plane, rotating around the \hat{y}_{n} axis by $\gamma_{1}=\pi / 2+\gamma$ from the \hat{z}_{n} axis. If $\gamma \simeq 0$, then we see that $\hat{z}_{n} \simeq \hat{z}$, which simply means that \vec{a} and $\overrightarrow{p_{1}}$ are nearly parallel. The $\overrightarrow{p_{2}}$ is obtained by a similar rotation by $\gamma_{2}=3 \pi / 2-\delta+\gamma$ where $\overrightarrow{p_{1}} \cdot \overrightarrow{p_{2}}=p_{1} p_{2} \cos (\pi-\delta)$. This is the second coordinate system.

Production Amplitudes

Production Amplitudes

Production Amplitudes

Decay Amplitudes

Let the particle $3\left(X^{0}\right)$ be in the state of $|j m\rangle$ and let it decay into two particles

$$
|j m\rangle \rightarrow\left|s_{4} \lambda_{4}\right\rangle+\left|s_{5} \lambda_{5}\right\rangle
$$

(particles 4 and 5 are new- introduced to indicate decay products)

$$
A\left(j \rightarrow s_{4}+s_{5}\right)=\langle(4+5)| \mathcal{M}_{d}|j m\rangle \propto \dot{j}_{\lambda_{4} \lambda_{5}}^{s_{4} s_{5}} D_{m,\left(\lambda_{4}-\lambda_{5}\right)}^{j *}\left(\phi_{4}, \theta_{4}, 0\right)
$$

$$
{ }^{j} F_{-\lambda_{4}-\lambda_{5}}^{s_{4} s_{5}}=\nu_{j} \nu_{4} \nu_{5}{ }^{j} F_{\lambda_{4} \lambda_{5}}^{s_{4} s_{5}}
$$

where ν_{j} is the 'naturality' of the particle j

$$
\nu_{j}=\eta(-)^{j} \text { for bosons }=\eta(-)^{j-1 / 2} \text { for fermions }
$$

where η is the intrinsic parity. Similarly for s_{4} and s_{5}.

Regge Trajectories

Regge Trajectories

$$
\begin{aligned}
|\ell S J M\rangle= & \sum_{m_{1} m_{2}}\left(s_{1} m_{1} s_{2} m_{2} \mid S m_{s}\right)\left(S m_{s} \ell m \mid J M\right) \\
\quad & \quad \times \int \mathrm{d} \vec{k} Y_{m}^{\ell}(\vec{k})\left|\mathbb{G},+\vec{k}, s_{1} m_{1}\right\rangle\left|\mathbb{P},-\vec{k}, s_{2} m_{2}\right\rangle
\end{aligned}
$$

so that

$$
\begin{aligned}
&\left.2|\ell S J M\rangle\right|_{\text {symm }}= \sum_{m_{1} m_{2}}\left(s_{1} m_{1} s_{2} m_{2} \mid S m_{s}\right)\left(S m_{s} \ell m \mid J M\right) \\
& \times \int \mathrm{d} \vec{k} Y_{m}^{\ell}(\vec{k})\left|\mathbb{G},+\vec{k}, s_{1} m_{1}\right\rangle\left|\mathbb{P},-\vec{k}, s_{2} m_{2}\right\rangle \\
&+\sum_{m_{1} m_{2}}\left(s_{2} m_{2} s_{1} m_{1} \mid S m_{s}\right)\left(S m_{s} \ell m \mid J M\right) \\
& \times \int \vec{k} Y_{m}^{\ell}(\vec{k})\left|\mathbb{P},+\vec{k}, s_{2} m_{2}\right\rangle\left|\mathbb{G},-\vec{k}, s_{1} m_{1}\right\rangle
\end{aligned}
$$

The result:

$$
\begin{aligned}
s_{1}+s_{2}+S+\ell=\text { even } \longrightarrow & (\mathbb{P}+\mathbb{P}) \oplus(\mathbb{P}+\mathbb{P}) ; S+\ell=\text { even } \\
& (\gamma+\mathbb{P}) \oplus(\mathbb{P}+\gamma) ; S+\ell=\text { odd }
\end{aligned}
$$

Exotic (non- $q \bar{q}) J^{P C}=0^{--}, 0^{+-}, 1^{-+}, 2^{+-}, 3^{-+}, 4^{+-}, 5^{-+}$

Likely $J^{P C}$ states allowed are:

$$
\begin{aligned}
& (\mathbb{P}+\mathbb{P}) \oplus(\mathbb{P}+\mathbb{P}) ; \quad S+\ell=\text { even } \longrightarrow \\
& I^{G}=0^{+}, \quad S=0,1,2,3,4 ; \quad \vec{J}=\vec{S}+\vec{\ell} \\
& J^{P C}(\ell=0 ; S=0,2,4) \longrightarrow 0^{++}, 2^{++}, 4^{++} \\
& (\ell=1 ; S=1,3) \longrightarrow 0^{-+}, 1^{-+}, 2^{-+}, 3^{-+}, 4^{-+} \\
& (\ell=2 ; S=0,2,4) \longrightarrow 0^{++}, 1^{++}, 2^{++}, 3^{++}, 4^{++}, 5^{++}, 6^{++}
\end{aligned}
$$

$$
(\gamma+\mathbb{P}) \oplus(\mathbb{P}+\gamma) ; S+\ell=\text { odd }
$$

$$
I^{G}=\left(0^{-}, 1^{+}\right), S=1,2,3 ; \quad \vec{J}=\vec{S}+\vec{\ell}
$$

$$
J^{P C}(\ell=0 ; S=1,3) \longrightarrow 1^{+-}, 3^{+-}
$$

$$
(\ell=1 ; S=2) \longrightarrow 1^{--}, 2^{--}, 3^{--}
$$

$$
(\ell=2 ; S=1,3) \longrightarrow 1^{+-}, 2^{+-}, 3^{+-}, 4^{+-}, 5^{+-}
$$

Three Processes for Central Production of $\pi \pi$:

$$
I+\ell=\text { even }
$$

- $\mathbb{P}\left(2^{++}\right)+\mathbb{P}\left(2^{++}\right) \rightarrow \pi \pi\left(I^{G}=0^{+} ; J^{P C}=0^{++}, 2^{++}, 4^{++}, \cdots\right)$ Two Natural-parity exchanges $\rightarrow \pi \pi(\ell=0,2,4)$ Dominant Process: $S+D$ waves

Three Processes for Central Production of $\pi \pi$:

$$
I+\ell=\text { even }
$$

- $\mathbb{P}\left(2^{++}\right)+\mathbb{P}\left(2^{++}\right) \rightarrow \pi \pi\left(I^{G}=0^{+} ; J^{P C}=0^{++}, 2^{++}, 4^{++}, \cdots\right)$

Two Natural-parity exchanges $\rightarrow \pi \pi(\ell=0,2,4)$
Dominant Process: $S+D$ waves

- $\rho(770)\left(1^{--}\right)+\mathbb{P}\left(2^{++}\right) \rightarrow \pi \pi\left(I^{G}=1^{+} ; \quad J^{P C}=1^{--}, 3^{--}, 5^{--}, \cdots\right)$

Two Natural-parity exchanges $\rightarrow \pi \pi(\ell=1,3,5)$
P-wave dominant

Three Processes for Central Production of $\pi \pi$:

$$
I+\ell=\text { even }
$$

- $\mathbb{P}\left(2^{++}\right)+\mathbb{P}\left(2^{++}\right) \rightarrow \pi \pi\left(I^{G}=0^{+} ; J^{P C}=0^{++}, 2^{++}, 4^{++}, \cdots\right)$

Two Natural-parity exchanges $\rightarrow \pi \pi(\ell=0,2,4)$
Dominant Process: $S+D$ waves

- $\rho(770)\left(1^{--}\right)+\mathbb{P}\left(2^{++}\right) \rightarrow \pi \pi\left(I^{G}=1^{+} ; \quad J^{P C}=1^{--}, 3^{--}, 5^{--}, \cdots\right)$

Two Natural-parity exchanges $\rightarrow \pi \pi(\ell=1,3,5)$
P-wave dominant

- $b_{1}(1235)\left(1^{+-}\right)+\mathbb{P}\left(2^{++}\right) \rightarrow \pi \pi\left(I^{G}=1^{+} ; J^{P C}=1^{--}, 3^{--}, 5^{--}, \cdots\right)$ Unnatural-parity and Natural-parity exchanges $\rightarrow \pi \pi(\ell=1,3,5)$ P-wave dominant

ALICE

- At ALICE, we have an additional production mechanism for Particle 3: photon-Pomeron processes,

P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, 054015(2016)

i.e.

ALICE

- At ALICE, we have an additional production mechanism for Particle 3: photon-Pomeron processes,

> P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, 054015(2016)
i.e.

- $\rho+$ Pomeron $\rightarrow \pi \pi(\ell=$ odd $)$ or 4π all with $I^{G}=1^{+}$

Non-strange light-quark (u, \bar{u}, d or \bar{d}) bound systems Mass $\simeq 0.8 \mathrm{GeV}$ or higher

ALICE

- At ALICE, we have an additional production mechanism for Particle 3: photon-Pomeron processes,

> P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, 054015(2016)
i.e.

- $\rho+$ Pomeron $\rightarrow \pi \pi(\ell=$ odd $)$ or 4π all with $I^{G}=1^{+}$

Non-strange light-quark (u, \bar{u}, d or \bar{d}) bound systems Mass $\simeq 0.8 \mathrm{GeV}$ or higher

- $\phi+$ Pomeron $\rightarrow K \bar{K}$ or $K \bar{K}+2 \pi$ all with $I^{G}=0^{-}$ $s \bar{s}$ bound systems-strangeonia Mass $\simeq 1.0 \mathrm{GeV}$ or higher

ALICE

- At ALICE, we have an additional production mechanism for Particle 3: photon-Pomeron processes,

> P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, $054015(2016)$
i.e.

- $\rho+$ Pomeron $\rightarrow \pi \pi(\ell=$ odd $)$ or 4π all with $I^{G}=1^{+}$

Non-strange light-quark (u, \bar{u}, d or \bar{d}) bound systems Mass $\simeq 0.8 \mathrm{GeV}$ or higher

- $\phi+$ Pomeron $\rightarrow K \bar{K}$ or $K \bar{K}+2 \pi$ all with $I^{G}=0^{-}$
$s \bar{s}$ bound systems-strangeonia
Mass $\simeq 1.0 \mathrm{GeV}$ or higher
- $J / \psi+$ Pomeron $\rightarrow D \bar{D}$ or $J / \psi+2 \pi$ all with $I^{G}=0^{-}$
$c \bar{c}$ bound systems-charmonia
Mass $\simeq 3.0 \mathrm{GeV}$ or higher

ALICE

- At ALICE, we have an additional production mechanism for Particle 3: photon-Pomeron processes,

> P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, 054015(2016)
i.e.

- $\rho+$ Pomeron $\rightarrow \pi \pi(\ell=$ odd $)$ or 4π all with $I^{G}=1^{+}$

Non-strange light-quark (u, \bar{u}, d or \bar{d}) bound systems Mass $\simeq 0.8 \mathrm{GeV}$ or higher

- $\phi+$ Pomeron $\rightarrow K \bar{K}$ or $K \bar{K}+2 \pi$ all with $I^{G}=0^{-}$
$s \bar{s}$ bound systems-strangeonia
Mass $\simeq 1.0 \mathrm{GeV}$ or higher
- $J / \psi+$ Pomeron $\rightarrow D \bar{D}$ or $J / \psi+2 \pi$ all with $I^{G}=0^{-}$
$c \bar{c}$ bound systems-charmonia
Mass $\simeq 3.0 \mathrm{GeV}$ or higher
- $\Upsilon+$ Pomeron $\rightarrow B \bar{B}$ or $\Upsilon+2 \pi$ all with $I^{G}=0^{-}$
$b \bar{b}$ bound systems-bottomonia
Mass $\simeq 9.5 \mathrm{GeV}$ or higher
"Central Exclusive Diffractive Production of 2π in pp and $\bar{p} p$ scattering within tensor Pomeron approach," P. Lebiedowicz, O. Nachtmann and A. Szczurek Phy. Rev. D93, 054015(2016)

2π Resonace

2π Continuum
$a+b \rightarrow 1+3+2$ in the 3RF

$$
\begin{aligned}
& p_{a}=p_{1}+p_{c}, \quad p_{b}=p_{2}+p_{d} \\
& p_{c}+p_{d}=p_{3} \\
& \vec{p}_{c}+\vec{p}_{d}=\vec{p}_{3}=0 \\
& \qquad \hat{z}_{m} \propto \vec{p}_{c} \text { and }-\hat{z}_{m} \propto \vec{p}_{d} \\
& \vec{p}_{a} \text { and } \vec{p}_{1} \text { in the } x_{m}-z_{m} \text { plane by } \\
& \text { defintion. So we must have } \\
& \hat{y}_{m} \propto \vec{z}_{m} \times \vec{p}_{a} \quad \text { and } \quad \hat{x}_{m}=\hat{y}_{m} \times \hat{z}_{m} \\
& \text { The plane formed by } \vec{p}_{b} \text { and } \vec{p}_{2} \\
& \text { is denoted by the plane rotated } \\
& \text { by } \Phi \text { around the } z_{m} \text {-axis. }
\end{aligned}
$$

This completes the construction of the third coordinate system.

Amplitudes for $a+b \rightarrow 1+3+2$
The reaction

$$
a \rightarrow 1+c, \quad b \rightarrow 2+d, \quad c+d \rightarrow 3
$$

The corresponding amplitudes

$$
\begin{aligned}
A=\sum_{i j} A(a \rightarrow & \left.1+c_{i}\right) * \Delta\left(c_{i}\right) * A\left(b \rightarrow 2+d_{j}\right) * \Delta\left(d_{j}\right) \\
& * A\left(c_{j}+d_{j} \rightarrow 3\right)
\end{aligned}
$$

where

$$
\{i, j\}=\{\text { Pomeron }+ \text { Pomeron, photon }+ \text { Pomeron, Pomeron }+ \text { photon }\}
$$

This completes the construction of all the relevant ampltidues in the problem.

Conclusions:

- The reaction

$$
\begin{aligned}
a+b & \rightarrow 1+3+2 \quad 3 \rightarrow 4+6+\cdots \\
a & \rightarrow 1+c \quad b \rightarrow 2+d \quad c+d \rightarrow 3
\end{aligned}
$$

is a 2- to 3-body process, if and only if the Regge domain formula holds

$$
s_{13} s_{23} \simeq s w_{3}^{2}, \quad \text { transverse mass: } \quad w_{3}^{2}=m_{3}^{2}+\kappa_{3}^{2}
$$

Conclusions:

- The reaction

$$
\begin{aligned}
a+b & \rightarrow 1+3+2 \quad 3 \rightarrow 4+6+\cdots \\
& a \rightarrow 1+c \quad b \rightarrow 2+d \quad c+d \rightarrow 3
\end{aligned}
$$

is a 2- to 3-body process, if and only if the Regge domain formula holds

$$
s_{13} s_{23} \simeq s w_{3}^{2}, \quad \text { transverse mass: } \quad w_{3}^{2}=m_{3}^{2}+\kappa_{3}^{2}
$$

- The reaction requires three different rest frames (RF's):
(a) The detector frame: $\{\hat{x}, \hat{y}, \hat{z}\}$
(b) The overall CM system where the normal $\hat{y} \propto \overrightarrow{p_{1}} \times \overrightarrow{p_{2}}$ the plane $\overrightarrow{p_{1}}+\overrightarrow{p_{2}}+\overrightarrow{p_{3}}=0$ lies the $x-z$ plane: $\left\{\hat{x}_{n}, \hat{y}_{n}, \hat{z}_{n}\right\}$
The Euler angles $R=(\alpha, \beta, \gamma)$ are used to transform from the frame (a) to the frame (b).
(c) In the 3RF, $\hat{z}_{m} \propto \vec{c}, \quad \hat{y}_{m} \propto \vec{a} \times \vec{p}_{1} \quad \hat{x}_{m}=\hat{y}_{m} \times \hat{z}_{m}:\left\{\hat{x}_{m}, \hat{y}_{m}, \hat{z}_{m}\right\}$ \vec{a} and \vec{p}_{1} lies in the $x_{m}-z_{m}$ plane; the plane formed by \vec{b} and \vec{p}_{2} rotated by angle Φ around the \hat{z}_{m} axis.
- Double-Pomeron process: Ground state are $f_{0}(500), f_{2}(1275)$ and $f_{4}(2050)$. Exotic mesons are possible $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{-+}\right), 0^{+}\left(3^{-+}\right) \ldots$
- Double-Pomeron process:

Ground state are $f_{0}(500), f_{2}(1275)$ and $f_{4}(2050)$.
Exotic mesons are possible $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{-+}\right), 0^{+}\left(3^{-+}\right) \ldots$

- Photon-Pomeron process:

Ground state are $h_{1}(1170)$ and $b_{1}(1235)$. The Regge recurrence NOT observed.
Exotic mesons are possible:

$$
I^{G}\left(J^{P C}\right)=\left(0^{-}, 1^{+}\right)\left(2^{+-}, 4^{+-} \ldots\right)
$$

- Double-Pomeron process:

Ground state are $f_{0}(500), f_{2}(1275)$ and $f_{4}(2050)$.
Exotic mesons are possible $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{-+}\right), 0^{+}\left(3^{-+}\right) \ldots$

- Photon-Pomeron process:

Ground state are $h_{1}(1170)$ and $b_{1}(1235)$. The Regge recurrence NOT observed.
Exotic mesons are possible:

$$
I^{G}\left(J^{P C}\right)=\left(0^{-}, 1^{+}\right)\left(2^{+-}, 4^{+-} \ldots\right)
$$

- ALICE can produced very exciting new results on mesonsin the next few years
- Double-Pomeron process:

Ground state are $f_{0}(500), f_{2}(1275)$ and $f_{4}(2050)$.
Exotic mesons are possible $I^{G}\left(J^{P C}\right)=0^{+}\left(1^{-+}\right), 0^{+}\left(3^{-+}\right) \ldots$

- Photon-Pomeron process:

Ground state are $h_{1}(1170)$ and $b_{1}(1235)$. The Regge recurrence NOT observed.
Exotic mesons are possible:

$$
I^{G}\left(J^{P C}\right)=\left(0^{-}, 1^{+}\right)\left(2^{+-}, 4^{+-} \ldots\right)
$$

- ALICE can produced very exciting new results on mesonsin the next few years
- We need a new PhD candiate to work on the 4π channel
- 4π production via $\sigma \sigma$ and $\rho \rho$ intermediate states:

Exclusive diffractive production of $\pi^{+} \pi^{-} \pi^{+} \pi^{-}$ via the intermediate $\sigma \sigma$ and $\rho \rho$ intermediate states in proton-proton collisions within tensor Pomeron approach

Piotr Lebiedowicz, Otto Nachtmann and Antoni Szczurek Phy. Rev. D94, 034017(2016)

4π Resonace

4π Continuum

Distribution with an arbitrary degree of coherence

For both 2π and 4π final states, Write

$$
I(\tau)=\sum_{\text {external spins }}\left|r_{0} A_{\operatorname{Res}}(\tau)+r\{\exp \phi\} A_{\mathrm{Con}}(\tau)\right|^{2}
$$

where τ is the phase-space variable for the production of the 2π and 4π final states and $r_{0}(0 \rightarrow 1), r(-\infty \rightarrow+\infty)$ and $\phi(0 \rightarrow 2 \pi)$ are real. We further assume that r_{0}, r and ϕ are real and independent of τ, i.e. they are taken to be constants in the problem. We see that

$$
\begin{aligned}
I(\tau)=r_{0}^{2}\left|A_{\mathrm{Res}}(\tau)\right|^{2} & +r^{2}\left|\{\exp \phi\} A_{\mathrm{Con}}(\tau)\right|^{2} \\
& +2 r_{0} r \Re\left\{A_{\operatorname{Res}}^{*}(\tau)\{\exp \phi\} A_{\mathrm{Con}}(\tau)\right\}
\end{aligned}
$$

where $\left(r_{0}, r_{1}\right)=(1,0)$ and $r=\phi=0$ for the Resonance term only and $\left(r_{0}, r_{1}\right)=(0,1)$ and $\phi=0$ for the Continuum term only.

Angular distribution of dileptons in high-energy hadron collisions,
J. C. Collins and D. E. Soper

Phys. Rev. D16, 2219 (1977)
Let $\hat{e}_{i},(i=1,2,3)$ be the unit vectors which define the reference frame. Then we have, in the 3RF,

Note that $\angle\left(\hat{p}_{a} \cdot \hat{e}_{3}\right)=\angle\left(-\hat{p}_{b} \cdot \hat{e}_{3}\right)$ so that the vector \hat{e}_{3} bisects the two vectors \hat{p}_{a} and $-\hat{p}_{b}$. And \hat{e}_{2} is the unit vector normal to the plane formed by \hat{p}_{a} and $-\hat{p}_{b}$. And \hat{e}_{2} lies in the plane formed by \hat{p}_{a} and $-\hat{p}_{b}$. This is the fourth reference frame.

Angular distribution of dileptons in high-energy hadron collisions,
J. C. Collins and D. E. Soper

Phys. Rev. D16, 2219 (1977)
Let $\hat{e}_{i},(i=1,2,3)$ be the unit vectors which define the reference frame. Then we have, in the 3RF,

$$
\begin{aligned}
& \hat{e}_{1}=\frac{\hat{p}_{a}+\hat{p}_{b}}{\left|\hat{p}_{a}+\hat{p}_{b}\right|} \\
& \hat{e}_{2}=\frac{\hat{p}_{a} \times \hat{p}_{b}}{\left|\hat{p}_{a} \times \hat{p}_{b}\right|} \\
& \hat{e}_{3}=\frac{\hat{p}_{a}-\hat{p}_{b}}{\left|\hat{p}_{a}-\hat{p}_{b}\right|}
\end{aligned}
$$

Note that $\angle\left(\hat{p}_{a} \cdot \hat{e}_{3}\right)=\angle\left(-\hat{p}_{b} \cdot \hat{e}_{3}\right)$ so that the vector \hat{e}_{3} bisects the two vectors \hat{p}_{a} and $-\hat{p}_{b}$. And \hat{e}_{2} is the unit vector normal to the plane formed by \hat{p}_{a} and $-\hat{p}_{b}$. And \hat{e}_{2} lies in the plane formed by \hat{p}_{a} and $-\hat{p}_{b}$. This is the fourth reference frame.

Angular distribution of dileptons in high-energy hadron collisions,
J. C. Collins and D. E. Soper

Phys. Rev. D16, 2219 (1977)
Let $\hat{e}_{i},(i=1,2,3)$ be the unit vectors which define the reference frame. Then we have, in the 3RF,

$$
\begin{aligned}
& \hat{e}_{1}=\frac{\hat{p}_{a}+\hat{p}_{b}}{\left|\hat{p}_{a}+\hat{p}_{b}\right|} \\
& \hat{e}_{2}=\frac{\hat{p}_{a} \times \hat{p}_{b}}{\left|\hat{p}_{a} \times \hat{p}_{b}\right|} \\
& \hat{e}_{3}=\frac{\hat{p}_{a}-\hat{p}_{b}}{\left|\hat{p}_{a}-\hat{p}_{b}\right|}
\end{aligned}
$$

Note that $\angle\left(\hat{p}_{a} \cdot \hat{e}_{3}\right)=\angle\left(-\hat{p}_{b} \cdot \hat{e}_{3}\right)$ so that the vector \hat{e}_{3} bisects the two vectors \hat{p}_{a} and $-\hat{p}_{b}$. And \hat{e}_{2} is the unit vector normal to the plane formed by \hat{p}_{a} and $-\hat{p}_{b}$. And \hat{e}_{2} lies in the plane formed by \hat{p}_{a} and $-\hat{p}_{b}$. This is the fourth reference frame.
$\pi+\pi^{-}$continuum

$\underline{\pi+\pi^{-} \text {continuum }}$

$$
\begin{aligned}
p_{c} & =p_{1}-p_{a} \\
& =p_{t}-p_{4} \\
p_{d} & =p_{2}-p_{b} \\
& =p_{5}-p_{t}
\end{aligned}
$$

$\underline{\pi+\pi^{-} \text {continuum }}$

$$
\begin{aligned}
p_{c} & =p_{1}-p_{a} \\
& =p_{t}-p_{4} \\
p_{d} & =p_{2}-p_{b} \\
& =p_{5}-p_{t}
\end{aligned}
$$

$$
\begin{aligned}
p_{c} & =p_{1}-p_{a} \\
& =p_{5}-p_{u} \\
p_{d} & =p_{2}-p_{b} \\
& =p_{u}-p_{4}
\end{aligned}
$$

The Last Slide

The 'correct' reference frame for a study of particle 3.

The Last Slide

The 'correct' reference frame for a study of particle 3.

Thank you for your attention

The propagator for a tensor Pomeron
$i \Delta_{\mu \nu, \kappa \lambda}^{(\mathbb{P})}(s, t)=\frac{1}{4 s}\left(g_{\mu \kappa} g_{\nu \lambda}+g_{\mu \lambda} g_{\mu \kappa}-\frac{1}{2} g_{\mu \lambda} g_{\kappa \lambda}\right)\left(-i s \alpha_{\mathbb{P}}^{\prime}\right)^{\alpha_{\mathbb{P}}(t)-1}$
where $\alpha_{\mathbb{P}}(t)=\alpha_{\mathbb{P}}(0)+\alpha_{\mathbb{P}}^{\prime} t=1.0808+0.25 t$.
We obtain, for the reaction $\lambda_{a} \lambda_{b} \rightarrow \lambda_{1} \lambda_{2} \pi^{+} \pi^{-}$,
with $e \cdot f=e^{\mu} f_{\mu}=e^{\mu} g_{\mu \nu} f^{\nu}=e_{\nu} f^{\nu}$,
$\mathcal{M}\left(\mathbb{P P} \rightarrow \pi^{+} \pi^{-}\right.$continuum $)=$

$$
\begin{aligned}
& \left(p_{1}-p_{a}\right) \cdot\left(p_{t}-p_{4}\right) \times\left(p_{2}-p_{b}\right) \cdot\left(p_{5}-p_{t}\right) \delta_{\lambda_{1} \lambda_{a}} \delta_{\lambda_{2} \lambda_{b}} \\
& \times\left(\frac{1}{4 s_{14}}\right)\left(-i s_{14} \alpha_{\mathbb{P}}^{\prime}\right)^{\alpha_{\mathbb{P}}\left(t_{c}\right)-1} \times\left(\frac{1}{4 s_{25}}\right)\left(-i s_{25} \alpha_{\mathbb{P}}^{\prime}\right)^{\alpha_{\mathbb{P}}\left(t_{d}\right)-1}
\end{aligned}
$$

$\mathcal{M}\left(\mathbb{P P} \rightarrow \pi^{-} \pi^{+}\right.$continuum $)=$

$$
\begin{aligned}
& \left(p_{1}-p_{a}\right) \cdot\left(p_{5}-p_{u}\right) \times\left(p_{2}-p_{b}\right) \cdot\left(p_{u}-p_{4}\right) \delta_{\lambda_{1} \lambda_{a}} \delta_{\lambda_{2} \lambda_{b}} \\
& \times\left(\frac{1}{4 s_{15}}\right)\left(-i s_{15} \alpha_{\mathbb{P}}^{\prime}\right)^{\alpha_{\mathbb{P}}\left(t_{c}\right)-1} \times\left(\frac{1}{4 s_{24}}\right)\left(-i s_{24} \alpha_{\mathbb{P}}^{\prime}\right)^{\alpha_{\mathbb{P}}\left(t_{d}\right)-1}
\end{aligned}
$$

[^0]: \dagger Senior Scientist Emeritus
 ${ }^{\alpha}$ Visiting Professor (part-time)
 ${ }^{\beta}$ EMMI Visiting Professor for August 2016
 \ddagger Scientific Consultant (part-time),
 The DFG cluster of excellence 'Origin and Structure of the Universe'

