Production Studies in LHCb using Proton Beams, Lead Beams and Fixed Targets QCD challenges in pp, pA and AA collisions at high energies ECT^{*} Trento Italy

Albert Frithjof Bursche Università degli Studi di Cagliari and INFN Cagliari on behalf of LHCb

European Research Council

Outline

Experimental Setup

- LHCb
- HeRSCheL Forward Scintillator
- SMOG Gas Target
- Proton Proton Collisions
 - W $c\overline{c}$, W $b\overline{b}$ and $t\overline{t}$ 8 TeV pp
 - J/ψ in Jets 13 TeV pp
 - J/ψ Pair Production
- Proton Gas Collisions
 - \overline{p} Production

110 GeV pHe

13 TeV pp

Charm Production
4 Lead Lead Collisions
 Charm Production
Proton Ion Collisions
 Angular Correlations
 D⁰ Production
• $J\!/\psi$ Production
• $\psi(2S)$ Production
• Υ Production
Z Production

110 GeV pAr

5 TeV PbPb

- 5 TeV pPb

3

27th February 2017 2 / 60

・ 何 ト ・ ヨ ト ・ ヨ ト

HeRSCHeL - Forward Scintillators

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

HeRSCHeL - Forward Scintillators

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

27th February 2017 4 / 60

HeRSCheL Concept

- If the Proton breaks up it will leave Debris in $5<\eta<7.5$
- Extend present LHCb to observe the Presence of a these Debris
- Much easier than Proton Taggers inside the Beam Pipe ("Roman Pots")

< 17 ►

Illustration

Colliding Protons, Gas and Lead in LHCb

SMOG - Gas Target

- SMOG System for Measuring Overlap with Gas
- Inject Gas into the Accelerator Vacuum
- Increase Pressure from 10^{-9} to 10^{-7} mbar
- Built for a Precise Measurement of the Beam Profiles (Luminosity)
- Enabled Best Luminosity Measurement at LHC

J. Instrum. 9 (2014) P12005

27th February 2017 6 / 60

1 2 3 4 4 5

SMOG - Vertices

LHCb data

SMOG - Performance

э

8 / 60

SMOG for Physics

Colliding Protons, Gas and Lead in LHCb

<ロ > < 部 > < 書 > < 書 > < 書 > 書 の Q (*) 27th February 2017 9 / 60

SMOG for Physics

- LHCb Acceptance becomes Central or Backward
- Injected Helium, Neon and Argon so far

Colliding Protons, Gas and Lead in LHCb

27th February 2017 9 / 60

э

Types of Collisions in LHCb

Types of Collisions in LHCb

◆□ > ◆□ > ◆臣 > ◆臣 > ○臣 ○ のへで

SMOG - Gas Target

Types of Collisions in LHCb

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Types of Collisions in LHCb

27th February 2017 10 / 60

3

Wide Range of Physics to explore

- High Luminosity and High Energy
- LHCb Flavour Physics Programme
- New Physics Searches at the Energy Frontier

イロト 不得 トイヨト イヨト

27th February 2017

3

11 / 60

Wide Range of Physics to explore

- High Luminosity and High Energy
- LHCb Flavour Physics Programme
- New Physics Searches at the Energy Frontier

- Study Baryonic Matter at extreme temperatures
- Probe Quark Gluon Plasma (QGP)
- Disentangle QGP signals from cold Nuclear Matter effects

Colliding Protons, Gas and Lead in LHCb

27th February 2017 11 / 60

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Wide Range of Physics to explore

- High Luminosity and High Energy
- LHCb Flavour Physics Programme
- New Physics Searches at the Energy Frontier

- Study Baryonic Matter at extreme temperatures
- Probe Quark Gluon Plasma (QGP)
- Disentangle QGP signals from cold Nuclear Matter effects

Cold Nuclear Matter effects:

- Gluon Shadowing in the Nucleus
- Gluon Saturation at low Bjorken-*x*
- Nuclear absorption in the final state
- Coherent energy loss in Nuclear Matter

27th February 2017

э

11 / 60

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Colliding Protons, Gas and Lead in LHCb

Proton Proton Collisions

\sqrt{s}		Luminosity		Conditions	Year		
0.9	TeV	0.2	nb^{-1}	low pileup	2010		
7	TeV	36.0	pb^{-1}	high pileup	2010		
7	TeV	3	million evt	low pileup	2010		
7	TeV	1.0	fb^{-1}	high pileup	2011		
2.76	TeV	71	nb^{-1}	low pileup	2011		
8	TeV	2.0	fb^{-1}	high pileup	2012		
2.76	TeV	3.1	pb^{-1}	low pileup	2013		
5	TeV	8.6	pb^{-1}	low pileup	2015		
13	TeV	320	pb^{-1}	high pileup	2015		
13	TeV	1.9	fb^{-1}	high pileup	2916		
Low pileup $(\mu pprox 0.1)$, High pileup $(\mu \leq 2$)							

Colliding Protons, Gas and Lead in LHCb

<ロト < 同ト < 回ト < 回ト = 三日 - 三日 -

Recorded Nucleus Collisons

year	Beam 1	Beam 2	SMOG	$\sqrt{s_{NN}}$	amount
2012	р	р	Ne	87 GeV	< 1h
2013	Pb	р	Ne	54 GeV	< 1h
2013	р	Pb	_	5 TeV	$1.1 \; { m nb}^{-1}$
2013	Pb	р	_	5 TeV	$0.5 \ \mathrm{nb}^{-1}$
2015	р	р	He	110 GeV	8 <i>h</i>
2015	р	р	Ne	110 GeV	12 <i>h</i>
2015	р	р	Ar	110 GeV	3 <i>d</i>
2015	Pb	р	Ar	69 GeV	few hours
2015	р	Pb	Ar	69 GeV	1.5 <i>w</i>
2015	Pb	Pb		5 TeV	$3-5\mu{ m b}$
2016	Pb	р	Ar	110 GeV	2 <i>d</i>

Colliding Protons, Gas and Lead in LHCb

 $\begin{array}{c} \langle \Box \rangle & \langle \overline{\Box} \rangle & \langle \overline{\Xi} \rangle & \langle \overline{\Xi} \rangle & \langle \overline{\Xi} \rangle & \overline{\Xi} & \langle \Im \rangle \\ \hline 27^{th} \ February \ 2017 & 13 \ / \ 60 \end{array}$

LHCb Results from Proton Proton Collisions

protons

Colliding Protons, Gas and Lead in LHCb

27th February 2017 14 / 60

3

・ロト ・ 国 ト ・ 国 ト ・ 国 ト

$Wc\overline{c}$, $Wb\overline{b}$ and $t\overline{t}$ Cross Section at 8 TeV

- Isolated electrons and muons
- $p_{T,\ell} > 20\,\mathrm{GeV}$, $2 < \eta_\mu < 4.5,\, 2 < \eta_e < 4.25$
- Two reconstructed Jets with $12.5 < p_T < 100 \, {\rm GeV}, \, \Delta_R > 0.5$
- Two Boosted Decision Trees (BDTs) for *heavy light* and for *beauty* – *charm* separation
- Multivariate Discriminant (uGB) with minimal correlation to m_{jj} to discriminate tt
- Signal from fit to Standard Model templates (Wcc̄, Wbb̄, t̄t, multi-jet BG) in BDT_(b|c) response, uGB and m_{jj}

Phys. Lett. B 767 (2017) 110-120

Colliding Protons, Gas and Lead in LHCb

Results

Albert Bursche ()

Phys. Lett. B 767 (2017) 110-120

Colliding Protons, Gas and Lead in LHCb

27th February 2017 16 / 60

ж

$J\!/\psi$ in Jets

- Reconstructed $J\!/\psi \rightarrow \! \mu^+ \mu^-$
- Input for k jets
- Measure ratio $z = \frac{p_{T, J/\psi}}{p_{T, iet}}$
- Separate Prompt and "from *b*" component
- Bins of z and p_{T,jet} combined

 t = l_zm_{J/ψ}
 p_{z,J/ψ}

Motivation

Study J/ ψ production in hadronisation and shed additional light on J/ ψ Polarisation.

arXiv:1701.05116 (submitted to PRL)

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

- Measure Ratio $z = \frac{p_{T,J/\psi}}{p_{T,jet}}$
- Compared to NRQCD prediction in Pythia 8
- Good agreement for "from b" distributions
- Prompt distribution is less isolated
 - $p_{T,jet} > 20 \text{ GeV}$
 - $2.5 < \eta_{\rm jet} < 4.5$
 - $2 < \eta_{J/\psi} < 4.5$

Colliding Protons, Gas and Lead in LHCb

 J/ψ Pair Production

Precision Measurement of J/ψ Pair Production

- 1000 double J/ $\psi \ {
 m
 m \rightarrow} \mu^+ \mu^-$ events selected
- Measure differentially in p_T , y, Δ_y ,

$$\mathcal{A}_{\mathcal{T}} = \left| rac{p_{\mathcal{T},J/\psi,1} - p_{\mathcal{T},J/\psi,2}}{p_{\mathcal{T},J/\psi,1} + p_{\mathcal{T},J/\psi,2}}
ight|$$

- $p_{\mathcal{T},\mu} > 650~{
 m MeV}$, $6 < p_{\mu} < 200~{
 m GeV}$, $2 < \eta_{\mu} < 4.5$
- Measurements with $p_{T,J/\psi} > 0 \text{ GeV}$, $p_{T,J/\psi} > 1 \text{ GeV}$ and $p_{T,J/\psi} > 3 \text{ GeV}$
- Prompt J/ ψ corrected for J/ ψ "from b"
- $\bullet~{\rm Using}~{\rm 279}\pm11\,{\rm pb}^{-1}$ of Luminosity

arXiv:1612.07451 (submitted to JHEP)

Colliding Protons, Gas and Lead in LHCb

Double J/ψ Production - Production Mechanisms

- \bullet Several Production Mechanisms for double J/ $\!\psi$
- Single Parton Scattering (SPS)
- Double Parton Scattering (DPS)

Common Approximation

$$\sigma_{J\!/\!\psi\,J\!/\!\psi} = \frac{1}{2} \frac{\sigma_{J\!/\!\psi}^2}{\sigma_{\rm eff}}$$

 $\sigma_{\rm eff}$: Effective Double Parton Scattering Cross Section $\sigma_{\rm eff}$ is expected to be constant for different production processes and energies.

Colliding Protons, Gas and Lead in LHCb

27th February 2017 20 / 60

Double J/ψ Production - Results

Albert Bursche ()

Colliding Protons. Gas and Lead in LHCb

 J/ψ Pair Production

13 TeV pp

Double Parton Scattering Fraction - Fits

Albert Bursche ()

Colliding Protons. Gas and Lead in LHCb

Double J/ψ Production - Effective DPS Cross Section

- $\sigma_{J/\psi\,J/\psi} = 13.5 \pm 0.9 \pm 0.8\,\mathrm{nb}$
- $\frac{1}{2} \frac{\sigma_{J/\psi \ J/\psi}}{\sigma_{J/\psi}^2} = 8.5 \pm 0.6 \pm 1.1 \, \mathrm{nb}$
- Significant DPS fraction σ_{eff} between 9.2 mb and 14.4 mb
- Only a selection of the results was shown

```
arXiv:1612.07451 (submitted to JHEP)
```


From Table 4 in arXiv:1612.07451 (submitted to JHEP) and Table 11 in JHEP 06 (12% correlated uncertainty is not shown. Compared to CDF Collaboration Phys. Rev. Lett. 79, 584

Colliding Protons, Gas and Lead in LHCb

27th February 2017 23 / 60

LHCb Results from Proton Gas Collisions

protons

gas (He, Ne, Ar)

Colliding Protons, Gas and Lead in LHCb

27th February 2017 24 / 60

3

・ロト ・雪ト ・ヨト・
Antiproton Production in Proton Helium at 110 GeV

Albert Bursche ()

Colliding Protons. Gas and Lead in LHCb

27th February 2017 25 / 60

Antiproton Production in Proton Helium at 110 GeV Motivation

- Antiproton production from Cosmic Rays
- Large uncertainty from Production in pHe
- Aids Interpretation of AMS results

110 GeV pHe

Analysis Strategy

- SMOG to inject He into LHC Vacuum
- RICH detectors for Proton ID
- Unusual Challenges
 - Luminosity Determination
 - Luminosity depends on Local Gas Density
 - Use Single Electron Events to measure Electron Density
 - He Purity in Accelerator
 - Residual Gas Analysis after the fill is dumped

Colliding Protons, Gas and Lead in LHCb

27th February 2017 27 / 60

(4) (2) (4) (4) (4)

p Production

110 GeV pHe

Analysis Strategy

- SMOG to inject He into LHC Vacuum
- RICH detectors for Proton ID
- Unusual Challenges
 - Luminosity Determination
 - Luminosity depends on Local Gas Density
 - Use Single Electron Events to measure Electron Density
 - He Purity in Accelerator
 - Residual Gas Analysis after the fill is dumped

Colliding Protons, Gas and Lead in LHCb

27th February 2017 27 / 60

4 1 1 4 4 1

p Production

110 GeV pHe

Analysis Strategy

- SMOG to inject He into LHC Vacuum
- RICH detectors for Proton ID
 Unusual Challenges
- Unusual Challenges
 - Luminosity Determination
 - Luminosity depends on Local Gas Density
 - Use Single Electron Events to measure Electron Density
 - He Purity in Accelerator
 - Residual Gas Analysis after the fill is dumped

Glimpse at the Results

Colliding Protons, Gas and Lead in LHCb

27th February 2017 28 / 60

-

Glimpse at the Results

Colliding Protons, Gas and Lead in LHCb

27th February 2017 28 / 60

- 500 J/ $\psi \rightarrow \mu^+ \mu^-$ Candidates
- 6500 $D^0 \rightarrow K^- \pi^+$ Candidates
- Measure Ratios and Yields with $0 < p_{TD^0, J/\psi} < 8 \, {\rm GeV}$
- $p_{T,\pi^{\pm}K^{\pm}} > 500 \,\mathrm{MeV}$
- CM frame at rapidity -4.77

•
$$2 < y_{lab} < 4.9$$
 and $-2.77 < y* < 0.13$

Charm Cross Section Ratios in Proton Argon at 110 GeV

- No significant dependence on Rapidity
- J/ψ tends to be produced at higher transverse momentum

•
$$\frac{\sigma_{J/\psi}}{\sigma_{D^0}} = \frac{n_{J/\psi}}{\epsilon_{J/\psi} \mathcal{B} J/\psi \rightarrow \mu^+ \mu^-} \frac{\epsilon_{D^0} \mathcal{B} D^0 \rightarrow \mathcal{K}^- \pi^+}{n_{D^0}}$$

LHCb-CONF-2017-001

30 / 60

Charm Yield in Proton Argon at 110 GeV - y

- $J\!/\psi$ is suppressed at Central Rapidity
- $p_{T,\pi^{\pm}K^{\pm}} > 500 \,\mathrm{MeV}$
- CM Frame at Rapidity -4.77
- $2 < y_{lab} < 4.9$ and -2.77 < y* < 0.13

LHCb-CONF-2017-001

Charm Yield in Proton Argon at 110 GeV - p_T

- J/ψ is suppressed at low p_T
- $p_{T,\pi^{\pm}K^{\pm}} > 500 \,\mathrm{MeV}$
- CM Frame at Rapidity -4.77
- $2 < y_{lab} < 4.9$ and -2.77 < y* < 0.13

LHCb-CONF-2017-001

Charm Production

More Charming Signals in Proton Argon at 110 GeV

5 TeV PbPb

イロト 不得 トイヨト イヨト

27th February 2017

3

34 / 60

LHCb Results from Lead Lead Collisions

Charm Production

5 TeV PbPb

Centrality

The size and the shape of the medium as well as the energy density depend on the geometry of the collision

Centrality

- b: Impact Parameter, transverse distance between the centres of the two nuclei
- *n*_{part}: Participating Nucleons (geometrically)
- n_{coll}: Number of nucleon-nucleon binary collisions (involves the NN interaction probability)

- No direct experimental measurement of b
- Need to infer centrality from indirect measurements
- Example: number of charged particles at mid rapidity, energy deposition at zero degree
- LHCb: not equipped with a dedicated detector.

Centrality determination

- Experimental observables: Total Energy in the Calorimeters, EM (ECal) or Hadronic (HCal)
- No saturation of calorimeter signals even for most central collisions
- Glauber fit to the ECal spectrum to determine Centrality Classes
- Saturation in Vertex Locator (VeLo) clearly visible. Track reconstruction was performed up to ${\sim}15k$ clusters
- Corresponding range: 50-100% Event Activity

27th February 2017 36 / 60

Charm Production

5 TeV PbPb

 \bigcirc \checkmark \blacksquare \checkmark \blacksquare \checkmark \blacksquare \checkmark 27th February 2017

37 / 60

Tracking the full Detector

- LHCb is optimised for Material Budget and not for Granularity
- Central PbPb and PbAr collisions challenge Tracking Capability
- Final Centrality Reach still under Study

Ultraperipheral Collisions

Select *exactly* two tracks in the event and veto additional Activity Clear Signal of *exclusive J*/ ψ production in PbPb collisions. More about our CEP results in pp in the talk by Murilo Rangel on Thursday

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

27th February 2017 38 / 60

Charm Production

5 TeV PbPb

Charm Signals...

- Strong Exclusive Contamination/Signal visible in bin 90% - 100%
- Herschel Scintillators can shed more light on this
- $p_{T,\mu} > 750 \, {
 m MeV}$, $t_{z,J\!/\psi} < 0.3 \, {
 m ps}$
- Efficiency calculation being finalised

LHCb Results from Proton Lead Collisions

LHCb Results from Proton Lead Collisions

Albert Bursche ()

LHCb Results

from Proton Lead Collisions

protons

- $\frac{Q}{m}$ is different for Lead and Protons
- LHC Beam Rigidity must be equal for both Beams
- Both Beams have different Energies
- CM frame Rapidity ± 0.465 in Lab Frame

40 / 60

Albert Bursche ()

Main Observables

Nuclear Modification Factor

Ratio of a Cross Section in pPb over pp. Needs Reference Cross Section from pp at the same Energy. Two of these Numbers in Proton Ion (Forward R_{pPb} /Backward R_{Pbp}).

Forward Backward Ratio

Ratio of a Cross Section in pPb over Pbp in overlapping

Rapidity range. R_{FB}

Angular Correlations in Proton Lead Collisions

- Use *n*_{Velo Cluster} Distribution for Centrality determination
- Main VeLo acceptance $1.9 < \eta < 4.9$ and Backward acceptance $-2.5 < \eta < 2$ (no momentum measurement)
- p_T ranges: $0.15 < p_T < 1 \,\text{GeV},$ $1 < p_T < 2 \,\text{GeV},$ $2 < p_T < 3 \,\text{GeV}$
- forward backward Phys. Lett. B 762 (2016) 473-483

Colliding Protons, Gas and Lead in LHCb

27th February 2017 42 / 60

4 2 5 4 2

Results

Albert Bursche ()

Colliding Protons. Gas and Lead in LHCb

27th February 2017 43 / 60

 D^0 Production

$D^0 \to K^- \pi^+$ in Proton Ion Collisions

- Double differential Cross Section (y, p_T)
- Nuclear Modification Factor in y, p_T
- Prompt D^0 corrected with $\chi^2_{I\!P}$ fit
- $p_{T,D^0} < 8 \,\mathrm{GeV}$

LHCb-CONF-2016-003

 D^0 Production

$D^0 \to K^- \pi^+$ in Proton Ion Collisions

- Double differential Cross Section (y, p_T)
- Nuclear Modification Factor in y, p_T
- Prompt D^0 corrected with $\chi^2_{I\!P}$ fit
- $p_{T,D^0} < 8 \,\mathrm{GeV}$

LHCb-CONF-2016-003

Colliding Protons, Gas and Lead in LHCb

27th February 2017 44 / 60

 D^0 Production

D^0 Forward Backward Ratio in Proton Ion Collisions

- Agreement with NLO prediction
- M. L. Mangano, P. Nason, and G. Ridol , *Nucl. Phys. B373 (1992) 295.*
- Many uncertainties cancel

preliminary LHCb-CONF-2016-003

Colliding Protons, Gas and Lead in LHCb

27th February 2017 47 / 60

 J/ψ Production

5 TeV pPb

$J/\psi \rightarrow \mu^+\mu^-$ in Proton Ion Collisions

- $J\!/\psi \rightarrow \mu^+\mu^-$ events
- $1.1 \,\mathrm{nb}^{-1} (0.5 \,\mathrm{nb}^{-1})$
- $p_{T,\mu} > 700 \,\mathrm{MeV}$
- Prompt and "from b" components separated
- Reference Cross Section: LHCb pp data at 2.76, 7,8 TeV extrapolated to 5 TeV (power-law)

JHEP 02 (2014) 72

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

27th February 2017 48 / 60

 J/ψ Production

5 TeV pPb

 $J/\psi \rightarrow \mu^+\mu^-$ in Proton Ion Collisions

 Differential in p_T and y and Double Differential in both.

JHEP 02 (2014) 72

Albert Bursche ()

 $\psi(2S)$ Production

5 TeV pPb

$\psi(2S) \rightarrow \mu^+ \mu^-$ in Proton Ion Collisions

- $\psi(2S) \rightarrow \mu^+ \mu^-$ events
- $1.1 \text{ nb}^{-1} (0.5 \text{ nb}^{-1})$
- $p_{T,\mu} > 700 \,\mathrm{MeV}$
- Prompt and "from b" components separated
- Nuclear Modification Factor is measured relative to J/ψ assuming $\frac{\sigma_{\psi(2S)}}{\sigma_{J/\psi}}$ identical at 5 TeV and 7 TeV

JHEP 03 (2016) 133

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

27th February 2017 50 / 60

 $\psi(2S)$ Production

5 TeV pPb

$\psi(2S) \rightarrow \mu^+ \mu^-$ in Proton Ion Collisions

• Differential in p_T and y • Too few events to separate "from b" component in Backward sample

JHEP 03 (2016) 133

$\psi(2S) \rightarrow \mu^+ \mu^-$ in Proton Ion Collisions

- Nuclear Modification Factor *R_{pPb}*
- Forward Backward Ratio R_{FB}
- E. Ferreiro, F. Fleuret, J.P. Lansberg and A. Rakotozafindrabe, Phys. Rev. C 88 (2013) 047901
- J. Albacete et al., Int. J. Mod. Phys. E 22 (2013) 1330007
- F. Arleo and S. Peigné, JHEP 03 (2013) 122
- ALICE Collaboration JHEP 12 (2014) 073
- PHENIX Collaboration Phys. Rev. Lett. 111 (2013) 202301

JHEP 03 (2016) 133

Albert Bursche ()

•
$$\Upsilon \to \mu^+ \mu^-$$
 events
• $1.1 \text{ nb}^{-1} (0.5 \text{ nb}^{-1})$ fw. (bw.)
• $p_{T,\mu} > 1 \text{ GeV}$

JHEP 07 (2014) 094

53 / 60

5 TeV pPb

$\Upsilon \to \mu^+ \mu^-$ in Proton Ion Collisions

- Nuclear Modification
 Factor R_{pPb}
- Reference Cross Section: LHCb pp data at 2.76, 7,8 TeV extrapolated to 5 TeV (power-law)
 - 3 J.L. Albacete et al., Int. J. Mod. Phys. E 22 (2013) 1330007
 - 4 A. Adeluyi and T. Nguyen, Phys. Rev.C 87 (2013) 027901
 - D. Kharzeev and H. Satz
 JHEP07(2014)094 Phys. Lett. B
 366 (1996) 316

JHEP 07 (2014) 094

Albert Bursche ()
5 TeV pPb

$\Upsilon \to \mu^+ \mu^-$ in Proton Ion Collisions

- Forward Backward Ratio *R_{FB}*
 - 3 J.L. Albacete et al., Int. J. Mod. Phys. E 22 (2013) 1330007
 - 4 A. Adeluyi and T. Nguyen, Phys. Rev.C 87 (2013) 027901
 - D. Kharzeev and H. Satz JHEP07(2014)094 Phys. Lett. B 366 (1996) 316

JHEP 07 (2014) 094

Colliding Protons, Gas and Lead in LHCb

Z Production

5 TeV pPb

Z in Proton Ion Collisions

Z Production

Z in Proton Ion Collisions

- Comparison to PYTHIA 8 (MSTW08)
- In this region nuclear PDFs have large uncertainty
- JHEP 09 (2014) 30

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

27th February 2017 57 / 60

Z Production

5 TeV pPb

Z in Proton Ion Collisions

 $\begin{array}{ll} \mbox{Forward} & \sigma = 13.5^{+5.4}_{-4.0}(\textit{stat}) \pm 1.2(\textit{syst})\, \rm{nb} \\ \mbox{Backward} & \sigma = 10.7^{+8.4}_{-5.1}(\textit{stat}) \pm 1.0(\textit{syst})\, \rm{nb} \\ \mbox{$R_{FB}(2.5 < |y| < 4.0) = 0.094^{+0.104}_{-0.062}(\textit{stat})^{+0.004}_{-0.007}(\textit{syst}) } \end{array}$

JHEP 09 (2014) 30

Colliding Protons, Gas and Lead in LHCb

27th February 2017 58 / 60

5 TeV pPb

More to come in 8 TeV Proton Lead

The usual suspects are around in big numbers...

Albert Bursche ()

Colliding Protons, Gas and Lead in LHCb

27th February 2017 59 / 60

・ロット (四) ・ (田) ・ (田)

Conclusion

- LHCb delivers excellent results on particle and multi particle production in a unique kinematic region
- We have a very diverse data set with pp, pHe, pNe, pAr, pPp and PbPb collisions
- LHCb is a forward general purpose detector
- HeRSCheL will improve LHCbs Diffraction Physics Program
- Many new Results under way

イロト 不得下 イヨト イヨト

Conclusion

- LHCb delivers excellent results on particle and multi particle production in a unique kinematic region
- We have a very diverse data set with pp, pHe, pNe, pAr, pPp and PbPb collisions
- LHCb is a forward general purpose detector
- HeRSCheL will improve LHCbs Diffraction Physics Program
- Many new Results under way

Thank You!

Colliding Protons, Gas and Lead in LHCb

60 / 60

Table of Contents

- Experimental Setup
 - LHCb
 - HeRSCheL Forward Scintillator
 - SMOG Gas Target
- Proton Proton Collisions
 - W $c\overline{c}$, W $b\overline{b}$ and $t\overline{t}$ 8 TeV pp
 - J/ ψ in Jets 13 TeV pp
 - $J\!/\psi$ Pair Production
- Proton Gas Collisions
 - p Production

110 GeV pHe $\,$

13 TeV pp

 Charm Production
Lead Lead Collisions
 Charm Production
Proton Ion Collisions
 Angular Correlations
 D⁰ Production
• J/ψ Production
• $\psi(2S)$ Production
• Υ Production
Z Production

5 TeV PbPb

- 5 TeV pPb

э

27th February 2017 61 / 60

< 回 > < 回 > < 回 >

Backup Double J/ψ

- LO CS A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, *Phys. Rev. D94 (2016)* 054017,
- LO CO H.-S. Shao, Comput. Phys. Commun. 184 (2013) 2562, Comput. Phys. Commun. 198 (2016) 238,
- $LO k_T$ J. R. Andersen et al. , Eur. Phys. J. C48 (2006) 53,
- NLO* CS' A. K. Likhoded, A. V. Luchinsky, and S. V. Poslavsky, *Phys. Rev. D94 (2016)* 054017,
- NLO* CS" L.-P. Sun, H. Han, and K.-T. Chao, Phys. Rev. D94 (2016) 074033, J.-P. Lansberg and H.-S. Shao, Phys. Lett. B751 (2015) 479, H.-S. Shao, Comput. Phys. Commun. 184 (2013) 2562, Comput. Phys. Commun. 198 (2016) 238, J.-P. Lansberg and H.-S. Shao, Phys. Rev. Lett. 111 (2013) 122001, Nucl. Phys. B900 (2015) 273
 - DPS CDF collaboration, Phys. Rev. Lett. 79 (1997) 584., LHCb collaboration, JHEP 10 (2015) 172, CDF collaboration, Phys. Rev.D56(1997) 3811.

イロト 不得 トイヨト イヨト 二日