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of light, the electromagnetic field becomes transverse to its 
velocity.
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nucleus take on the same absolute value, the electromagnetic 
field can be described by an equivalent flux of photons (a).
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Maximum photon energy:

The photon spectrum is 
harder for smaller charges!

Thus the collision of two charged nuclei at large impact 
parameter (ultra – peripheral collisions) can be described as the 
collision of two equivalent swarms of photons.
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MotivationPhoton – Induced Interactions: 
Center of mass energiesLHC = Photon collider
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Photoproduction in pp collisions at LHC probes photon – 
hadron center – of – mass energies one order of magnitude 
larger than HERA.  
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Photoproduction in pA and AA collisions at LHC probes a 
unexplorated regime of photon – nucleus center of mass  
energies.



MotivationPhoton – Induced Interactions: 
Center of mass energiesLHC = Photon collider

Photon – induced interactions at LHC allows to study 
the high energy regime of QCD (Small – x Physics).  



Hadronic structure at high 
energies

✔ Proton structure at high 
energies (small values of 
x) is dominated by gluons;

✔ Linear QCD Evolution 
equations (DGLAP/BFKL) 
predict a power growth of 
gluon distribution at small 
-x;

✔  Large uncertainty on the 
behaviour at small -x;

✔ The current data included 
in the global analysis does 
not constrain the gluon 
distribution at high 
energies.



QCD dynamics at high energiesHadronic structure at high 
energies

✔ The current electron – ion 
experimental data does not 
constrain the small -x 
behaviour;

✔ Large theoretical 
uncertainty present in the 
kinematical range probed by 
LHC.
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in UPHIC: Probing the gluon distribution

At leading order in LL(1/x) approx.:

Cross section is proportional to 
the square of the hadron gluon 
distribution at
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Diffractive vector meson photoproduction 
in UPHIC: Probing the gluon distribution

Description of data in the LL(1/x) approach  is not possible 
using xg derived in the PDF global analysis !
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Diffractive vector meson photoproduction 
in UPHIC: Probing the gluon distribution

Possible interpretations:

1-) We need to take into account the NLO corrections to the 
LL(1/x) approach.
      - Recent studies demonstrated that these corrections are 
huge (not yet under theoretical control).

2-) New dynamical effects (beyond DGLAP!) are present at the 
large energies (small values of x) probed by the diffractive 
photoproduction of vector mesons at the LHC. 

-  We should to use another approach to describe the 
process !
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QCD dynamics at high energies

✔ Saturation scale Qs [proportional to (1/x)/2A] defines the 
onset of nonlinear QCD dynamics (Gluon saturation effects);

✔ Nuclei are an efficient amplifier of the gluon saturation effects.

QCD dynamics at high energies
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Overlap function for Vector Mesons



Diffractive vector meson photoproduction 
in UPHIC: Color Dipole Formalism

Forward dipole – hadron scattering amplitude: Determined by the QCD dynamics



Diffractive vector meson 
photoproduction in UPHIC 

- Proposed originally by Kowalski, Motyka and Watt (06) 
- Parameters of the model updated considering the high 

precision combined HERA data (Rezaeian, Schmidt, 13)

Dipole – proton scattering amplitude:

• bCGC :

Diffractive vector meson photoproduction in 
UPHIC:  Color Glass Condensate Formalism



Rezaeian, INT workshop ‘17



Diffractive vector meson photoproduction 
in UPHIC: Color Dipole Formalism

• Nucleus: Sums all multiple elastic 
rescatterings  of the dipole.



Diffractive vector meson photoproduction 
in UPHIC: Color Dipole Formalism

In the dipole picture, all free parameters have been constrained 
by HERA data. Predictions for UPHIC are parameter free! 
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Diffractive vector meson photoproduction in 
UPHIC: Impact of the gluon saturation effects 

PbPb Collisions:

VPG, Spiering, Navarra, arXiv:1701.04340

Coherent production: Incoherent production:

A A
AA

A



Diffractive vector meson photoproduction in 
UPHIC: Impact of the gluon saturation effects 

PbPb Collisions:

VPG, Spiering, Navarra, arXiv:1701.04340

Linear model:
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VPG, Moreira, Navarra, arXiv:1612.06254

Diffractive J/Psi photoproduction in pp collisions:
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VPG, Moreira, Navarra, arXiv:1612.06254

Diffractive Psi(2S) photoproduction in pp collisions:



Comparison with the LHC data

VPG, Moreira, Navarra, arXiv:1612.06254

Diffractive Upsilon photoproduction in pp collisions:



Comparison with the LHC data

VPG, Moreira, Navarra, arXiv:1612.06254

Energy dependence of the photon – proton cross section:
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photon – induced interactions at the LHC is an 
important probe of the QCD dynamics at high 
energies.

 The Run I data can be sucessfully described by the 
color dipole formalism taking into account the 
nonlinear effects in the QCD dynamics.

 The Run II data can be used to constrain the 
description of the dipole – hadron scattering 
amplitude and the vector meson wave function

 Complementary studies can be performed by analysis 
of the double vector meson production and the 
vector meson production associated to a leading 
neutron.
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important probe of the QCD dynamics at high 
energies.

 The Run I data can be sucessfully described by the 
color dipole formalism taking into account the 
nonlinear effects in the QCD dynamics.

 The Run II data can be used to constrain the 
description of the dipole – hadron scattering 
amplitude and the vector meson wave function

 Complementary studies can be performed by analysis 
of the double vector meson production and the 
vector meson production associated to a leading 
neutron.

Thank you for your attention!
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Comparison with the Run I data

(a) VPG, Moreira, Navarra, PRC90, 015203 (2014)
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Comparison with the Run I data

(c) VPG, Machado, EPJC 40, 519 (2005); PRC80, 054901 (2009); PRC84, 011902 
(2011); Machado, dos Santos, PRC91, 025203 (2015)
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