QCD challenges in pp, pA and AA collisions at high energies

Trento, February 27 - March 3, 2017

Small x shadowing from data on coherent J / ψ photoproduction

J. G. Conbreras
Czech Technical Universily February 28, 2017

Contents

From $\mathrm{Pb}-\mathrm{Pb}$ to rpb

Data

Photon flux
Extracted $\gamma \mathrm{Pb}$ cross section

Suppression factor

From $\mathrm{Pb}-\mathrm{Pb}$ to rPb

Coherent photoproduction of J / ψ in Pb-Pb collisions
Cross section has two components

Source travels towards detector: photon has Large energy

Source travels away from detector: photon has small energy

Coherent photoproduction of J / ψ in Pb-Pb collisions
Cross section has two components

Source travels towards detector: photon has Large energy

Source travels away from detector: photon has small energy

For measurements at mid rapidity both components are equal

Coherent photoproduction of J / ψ in Pb-Pb collisions
Cross section has two components

Source travels towards detector: photon has Large energy

Source travels away from detector: photon has small energy

For measurements at mid rapidity both components are equal
For measurements at forward rapidities they differ

Coherent Pb-Pb cross section

Convolution of the photon flux and the photonuclear cross section

Coherent Pb-Pb cross section

Convolution of the photon flux and the photonuclear cross section

$$
\frac{d \sigma_{\mathrm{PbPb}}}{d y}=n_{\gamma}\left(y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(y)+n_{\gamma}\left(-y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(-y)
$$

Coherent Pb-Pb cross section

Convolution of the photon flux and the photonuclear cross section

Measured cross section from $\mathrm{Pb}-\mathrm{Pb}$ collisions

$$
\frac{d \sigma_{\mathrm{PbPb}}}{d y}=n_{\gamma}\left(y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(y)+n_{\gamma}\left(-y ; b_{1,2}\right) \sigma_{\gamma \mathrm{Pb}}(-y)
$$

Coherent Pb-Pb cross section

Convolution of the photon flux and the photonuclear cross section

Measured cross section from $\mathrm{Pb}-\mathrm{Pb}$ collisions

> Photon flux at rapidity ty in the impact parameter range (b1,b2)

Coherent Pb-Pb cross section

Convolution of the photon flux and the photonuclear cross section

Measured cross section from Pb-Pb collisions

> Photon flux at rapidity ty in the impact parameter range (b1,b2)

Coherent Pb-pb cross section

Convolution of the photon flux and the photonuclear cross section

Measured cross section from $\mathrm{Pb}-\mathrm{Pb}$ collisions
Photon flux at rapidity $\pm y$ in the
impact parameter range (b1,b2) impact parameter range (b1,b2)

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at $-y$ simultaneously

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at $-y$ simultaneously

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}(-y)=\left(n_{\gamma}^{P}(y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}-n_{\gamma}^{U}(y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}\right) / F(y) \\
& \sigma_{\gamma \mathrm{Pb}}(y)=\left(n_{\gamma}^{U}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}-n_{\gamma}^{P}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}\right) / F(y)
\end{aligned}
$$

$$
F(y) \equiv n_{\gamma}^{P}(y) n_{\gamma}^{U}(-y)-n_{\gamma}^{U}(y) n_{\gamma}^{P}(-y)
$$

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at $-y$ simultaneously

$$
\begin{aligned}
& \sigma_{\gamma \mathrm{Pb}}(-y)=\left(n_{\gamma}^{P}(y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}-n_{\gamma}^{U}(y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}\right) / F(y) \\
& \sigma_{\gamma \mathrm{Pb}}(y)=\left(n_{\gamma}^{U}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{P}}{d y}-n_{\gamma}^{P}(-y) \frac{d \sigma_{\mathrm{PbPb}}^{U}}{d y}\right) / F(y)
\end{aligned}
$$

$$
F(y) \equiv n_{\gamma}^{P}(y) n_{\gamma}^{U}(-y)-n_{\gamma}^{U}(y) n_{\gamma}^{P}(-y)
$$

use measurements in ultra-peripheral (U) and in peripheral (P) collisions by ALICE

Daka

Measurements of coherent production of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

In UPC collisions:

Measurements at mid and forward rapidikies

Measurements of coherent production of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

ALICE: Phys.Rev.Lett. 116 (2016) 222301

In UPC collisions:

Measuremenks at mid and forward rapidilies

In peripheral collisions:
al forward rapidicicies

Measurements of coherent production of J / ψ in $\mathrm{Pb}-\mathrm{Pb}$ collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

$1,0 \pm 0.18$ (stat.) ± 0.26 (syst.) mb

In UPC collisions:

Measurements at mid and forward rapidities

ALICE: Phys.Rev.Lett. 116 (2016) 222301

s9士11(stat.) ± 12 (syst.) μb

Shifting the UPC measurement
This method implicitly assumes that the measurements have been performed at the same rapidity
This is not so for the case of ALICE results, where two different rapidity ranges were used:
UPC: $-3.6<y<-2.6$, peripheral $-4<y<-2.6$

Shifting the UPC measurement

This method impticitly assumes that the measurements have been performed at the same rapidity This is not so for the case of ALICE results, where two different rapidity ranges were used:

UPC: $-3.6<y<-2.6$, peripheral $-4<y<-2.6$
Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the $d \sigma_{\mathrm{PbPb}}^{U} / d y$ at $|y|=3.1$ to that at $|y|=3.25$ for five different models.

Model	$[13]$	$[15]$	$[16]$	$[17]$	$[18]$
Ratio	1.10	1.12	1.12	1.17	1.09

$$
\text { Here, }[13]=\text { Starlight, }[15]=R S 2,[16]=A B,[17]=\operatorname{CSS} \text { and }[18]=\mathrm{GM}
$$

Shifting the UPC measurement

This method impticitly assumes that the measurements have been performed at the same rapidity This is not so for the case of ALICE results, where two different rapidity ranges were used:

UPC: $-3.6<y<-2.6$, peripheral $-4<y<-2.6$
Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the $d \sigma_{\mathrm{PbPb}}^{U} / d y$ at $|y|=3.1$ to that at $|y|=3.25$ for five different models.

Model	$[13]$	$[15]$	$[16]$	$[17]$	$[18]$
Ratio	1.10	1.12	1.12	1.17	1.09

$$
\text { Here, }[13]=\text { Starlight, }[15]=R S 2,[16]=A B,[17]=\operatorname{CSS} \text { and }[18]=\mathrm{GM}
$$

Photon flux

Photon flux from a fast parkicle

$$
n\left(k, \vec{x}_{\perp}\right)=\frac{Z^{2} \alpha_{\mathrm{QED}}}{\pi^{2} k}\left|\int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} \frac{F\left(k_{\perp}^{2}+(k / \gamma)^{2}\right.}{k_{\perp}^{2}+(k / \gamma)^{2}} J_{1}\left(x_{\perp} k_{\perp}\right)\right|^{2}
$$

Photon flux from a fast particle

Flux of photons

$$
n\left(k, \vec{x}_{\perp}\right)=\frac{Z^{2} \alpha_{\mathrm{QED}}}{\pi^{2} k}\left|\int_{0}^{\infty} d k_{\perp} k_{\perp}^{2} \frac{F\left(k_{\perp}^{2}+(k / \gamma)^{2}\right.}{k_{\perp}^{2}+(k / \gamma)^{2}} J_{1}\left(x_{\perp} k_{\perp}\right)\right|^{2}
$$

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

Photon flux from a fast particle

$$
F_{p c}(q)=1
$$

```
integral can be done analytically
```

$$
n_{p c}\left(k, \vec{x}_{\perp}\right)=\frac{Z^{2} \alpha_{\mathrm{QED}} k}{\pi^{2} \gamma^{2}} K_{1}^{2}\left(k x_{\perp} / \gamma\right)
$$

Other form factors for Pb

Other form factors for Pb

very similar \rightarrow use convolution of hard sphere and Yukawa potential

Fluxes from Pb: point charge vs hsy form factors

Flux in UPC collisions

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Flux in UPC collisions

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of no hadronic interaction

Flux in UPC collisions

Nuclear thickness

$$
n^{U}(y)=k \int_{0}^{\infty} d b 2 \pi b P_{N H}(b) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of no hadronic interaction

Flux in UPC collisions

Nuclear Chickness

Flux in peripheral collisions

Integration limits given by centrality class

$$
n^{P}(y)=k \int_{b_{\min }}^{b_{\max }} d b 2 \pi b\left(1-P_{N H}(b)\right) \int_{0}^{r_{A}} \frac{r d r}{\pi r_{A}^{2}} \int_{0}^{2 \pi} d \phi n(k, b+r \cos (\phi))
$$

Probability of hadronic interaction

Extracked $\gamma \mathrm{Pb}$ cross section

Using the procedure

 outlined previously:$$
\begin{aligned}
\sigma(y=-3.25) & =5.2 \pm 1.0 \mu \mathrm{~b} \\
\sigma(y=0) & =15.0 \pm 2.7 \mu \mathrm{~b} \\
\sigma(y=3.25) & =38 \pm 15 \mu \mathrm{~b}
\end{aligned}
$$

Coherent photonuclear cross section

Using the procedure oullined previously:

$$
\begin{aligned}
\sigma(y=-3.25) & =5.2 \pm 1.0 \mu \mathrm{~b} \\
\sigma(y=0) & =15.0 \pm 2.7 \mu \mathrm{~b} \\
\sigma(y=3.25) & =38 \pm 15 \mu \mathrm{~b}
\end{aligned}
$$

Suppression factor

Extracting the nuclear suppression factor

Data from the procedure just described
Nuclear suppression factor

$$
\sigma_{\gamma \mathrm{Pb}}^{\mathrm{IA}}\left(W_{\gamma \mathrm{Pb}}\right)=\frac{d \sigma_{\gamma \mathrm{p}}\left(W_{\gamma \mathrm{p}}=W_{\gamma \mathrm{Pb}}, t=0\right)}{d t} \Phi_{\mathrm{Pb}}\left(|t|_{\min }\right)
$$

$$
\Phi_{A}\left(t_{\min }\right)=\int_{t_{\min }}^{\infty} d t\left|F_{W S}(t)\right|^{2}
$$

The nuclear suppression factor

Using the previous formulas

$$
\begin{aligned}
S\left(W_{\gamma \mathrm{Pb}}=18.2 \mathrm{GeV}\right) & =0.74 \pm 0.10 \\
S\left(W_{\gamma \mathrm{Pb}}=92.4 \mathrm{GeV}\right) & =0.57 \pm 0.06 \\
S\left(W_{\gamma \mathrm{Pb}}=469.5 \mathrm{GeV}\right) & =0.47 \pm 0.09
\end{aligned}
$$

The nuclear suppression factor

Using the previous formulas

$$
\begin{aligned}
S\left(W_{\gamma \mathrm{Pb}}=18.2 \mathrm{GeV}\right) & =0.74 \pm 0.10 \\
S\left(W_{\gamma \mathrm{Pb}}=92.4 \mathrm{GeV}\right) & =0.57 \pm 0.06 \\
S\left(W_{\gamma \mathrm{Pb}}=469.5 \mathrm{GeV}\right) & =0.47 \pm 0.09
\end{aligned}
$$

Summary and outlook

- Using peripheral and ultra-peripheral data it is possible to extract the photonuclear coherent cross section at different rapidities/centre-of-mass energies/Bjorken-x values
- The main assumption is that one can use the standard formalism for the photon fluxes This is justified, for the current somehow large experimental errors, because
- The shape of the pt distribution for $j /$ psi in the centrality class 70-90 is compatible with the distribution obtained for UPC
- The number of participants in this centrality class is small
- Using the extracted cross sections one can construct a nuclear suppression factor bo allow easy comparison to different models.

