QCD challenges in pp, pA and AA collisions at high energies Trento, February 27 - March 3, 2017

Small x shadowing from data on coherent J/ψ photoproduction

J. G. Contreras Czech Technical University February 28, 2017

arXiv: 1610.03350

Contents

- From Pb-Pb to yPb
 - Data
 - Photon flux
- Extracted rPb cross section
 - Suppression factor

From Pb-Pb to yPb

Coherent photoproduction of J/4 in Pb-Pb collisions

Cross section has two components

Source travels towards detector: photon has large energy

Source travels away from detector: photon has small energy

Coherent photoproduction of J/4 in Pb-Pb collisions

Cross section has two components

Source travels towards detector: photon has large energy

For measurements at mid rapidity both components are equal

Source travels away from detector: photon has small energy

Coherent photoproduction of J/4 in Pb-Pb collisions

Cross section has two components

Source travels towards detector: photon has large energy

For measurements at mid rapidity both components are equal

source travels away from detector: photon has small energy

For measurements at forward rapidities they differ

 $\frac{d\sigma_{\rm PbPb}}{dy} = n_{\gamma}(y;b_{1,2})\sigma_{\gamma\rm Pb}(y) + n_{\gamma}(-y;b_{1,2})\sigma_{\gamma\rm Pb}(-y)$

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at -y simultaneously

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at -y simultaneously

$$\sigma_{\gamma \rm Pb}(-y) = \left(n_{\gamma}^{P}(y)\frac{d\sigma_{\rm PbPb}^{U}}{dy} - n_{\gamma}^{U}(y)\frac{d\sigma_{\rm PbPb}^{P}}{dy}\right)/F(y)$$

$$\sigma_{\gamma \rm Pb}(y) = \left(n_{\gamma}^{U}(-y)\frac{d\sigma_{\rm PbPb}^{P}}{dy} - n_{\gamma}^{P}(-y)\frac{d\sigma_{\rm PbPb}^{U}}{dy}\right)/F(y)$$

$$F(y) \equiv n_{\gamma}^{P}(y)n_{\gamma}^{U}(-y) - n_{\gamma}^{U}(y)n_{\gamma}^{P}(-y)$$

Coherent photonuclear production

When the photon flux is known, measuring the Pb-Pb cross section in two different impact parameter ranges at the same rapidity allows one to extract the photonuclear cross section at y and at -y simultaneously

$$\sigma_{\gamma \rm Pb}(-y) = \left(n_{\gamma}^{P}(y)\frac{d\sigma_{\rm PbPb}^{U}}{dy} - n_{\gamma}^{U}(y)\frac{d\sigma_{\rm PbPb}^{P}}{dy}\right)/F(y)$$

$$\sigma_{\gamma \rm Pb}(y) = \left(n_{\gamma}^{U}(-y)\frac{d\sigma_{\rm PbPb}^{P}}{dy} - n_{\gamma}^{P}(-y)\frac{d\sigma_{\rm PbPb}^{U}}{dy}\right)/F(y)$$

$$F(y) \equiv n_{\gamma}^{P}(y)n_{\gamma}^{U}(-y) - n_{\gamma}^{U}(y)n_{\gamma}^{P}(-y)$$

use measurements in ultra-peripheral (U) and in peripheral (P) collisions by ALICE

Measurements of coherent production of J/4 in Pb-Pb collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

In UPC collisions: Measurements at mid and forward rapidities

Measurements of coherent production of J/4 in Pb-Pb collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

In UPC collisions: Measurements at mid and forward rapidities ALICE: Phys.Rev.Lett. 116 (2016) 222301

In peripheral collisions: at forward rapiditities

Measurements of coherent production of J/y in Pb-Pb collisions

ALICE: Phys.Lett. B718 (2013) 1273-1283 and Eur. Phys. J. C (2013) 73:2617

1.0±0.18(stat.)±0.25(syst.) mb

In UPC collisions: Measurements at mid and forward rapidities ALICE: Phys.Rev.Lett. 116 (2016) 222301

59±11(stat.)±12(syst.) ~b

In peripheral collisions: at forward rapiditities

shifting the UPC measurement

This is not so for the case of ALICE results, where two different rapidity ranges were used:

UPC: -3.6<4<-2.6, peripheral -4<4<-2.5

This method implicitly assumes that the measurements have been performed at the same rapidity

shifting the UPC measurement

Models have been used to shift the UPC measurement to the peripheral range

TABLE II. Ratios of the $d\sigma_{\rm PbPb}^U/dy$ at |y| = 3.1 to that at |y| = 3.25 for five different models.

Model Potio	$\begin{bmatrix} 13 \\ 1.10 \end{bmatrix}$	$\begin{bmatrix} 15 \\ 1.12 \end{bmatrix}$	$\begin{bmatrix} 16 \\ 1.12 \end{bmatrix}$	$\begin{bmatrix} 17 \\ 1.17 \end{bmatrix}$	$\begin{bmatrix} 18 \\ 1.09 \end{bmatrix}$	
Ratio	1.10	1.12	1.12	1.11	1.09	
[13] = Sto	rlight, [15]	=RSZ, [16]] = AB, [17]] = CSS and	I[18] = G	M

Here, L?

- This method implicitly assumes that the measurements have been performed at the same rapidity
- This is not so for the case of ALICE results, where two different rapidity ranges were used:
 - UPC: -3.6<4<-2.6, peripheral -4<4<-2.5

shifting the UPC measurement

Models have been used to shift the UPC measurement to the peripheral range

|y| = 3.25 for five different models.

Model Ratio	[<u>13</u>] 1.10	$\begin{bmatrix} 15 \\ 1.12 \end{bmatrix}$	[16] 1.12	$\begin{bmatrix} 17 \\ 1.17 \end{bmatrix}$	[18] 1.09

Here, [13] = Starlight, [15] = RSZ, [16] = AB, [17] = CSS and [18] = GM

- This method implicitly assumes that the measurements have been performed at the same rapidity
- This is not so for the case of ALICE results, where two different rapidity ranges were used:
 - UPC: -3.6<4<-2.6, peripheral -4<4<-2.5

TABLE II. Ratios of the $d\sigma_{\rm PbPb}^U/dy$ at |y| = 3.1 to that at

Photon flux

$$n(k,ec{x_\perp}) = rac{Z^2lpha_{ ext{QED}}}{\pi^2 k} \left| \int_0^\infty dk_\perp k_\perp^2 rac{F(k_\perp^2 + (k/\gamma)^2}{k_\perp^2 + (k/\gamma)^2} J_1(x_\perp k_\perp)
ight|^2$$

$$k_{\perp}k_{\perp}^2 rac{F(k_{\perp}^2+(k/\gamma)^2}{k_{\perp}^2+(k/\gamma)^2} J_1(x_{\perp}k_{\perp}) igg|^2$$

$$k_{\perp}k_{\perp}^2 rac{F(k_{\perp}^2+(k/\gamma)^2}{k_{\perp}^2+(k/\gamma)^2} J_1(x_{\perp}k_{\perp}) igg|^2$$

$$k_{\perp}k_{\perp}^2 rac{F(k_{\perp}^2+(k/\gamma)^2}{k_{\perp}^2+(k/\gamma)^2} J_1(x_{\perp}k_{\perp}) igg|^2$$

$$k_{\perp}k_{\perp}^2 rac{F(k_{\perp}^2+(k/\gamma)^2}{k_{\perp}^2+(k/\gamma)^2} J_1(x_{\perp}k_{\perp}) \Big|^2$$

$$k_{\perp}k_{\perp}^2 rac{F(k_{\perp}^2+(k/\gamma)^2}{k_{\perp}^2+(k/\gamma)^2} J_1(x_{\perp}k_{\perp}) \Big|^2$$

Lorentz factor

 $n_{pc}(k,ec{x_{\perp}}) = rac{Z^2lpha_{ ext{QED}}k}{\pi^2\gamma^2}K_1^2(kx_{\perp}/\gamma)$

Form factor for a point charge

$$c(q) = 1$$

integral can be done analytically

Other form factors for Pb

$$F_{WS}(q) = \frac{4\pi d_0}{Aq^3} \left[\sin(qR_A) - qR_A \cos(qR_A) \right] \left(\frac{1}{1+a} + \frac{1}$$

Very similar -> use convolution of hard sphere and Yukawa potential

Other form factors for Pb

$$F_{WS}(q) = \frac{4\pi d_0}{Aq^3} \left[\sin(qR_A) - qR_A \cos(qR_A) \right] \left(\frac{1}{1+a} + \frac{1}$$

Fluxes from Pb: point charge vs hsy form factors

$$n^{U}(y) = k \int_{0}^{\infty} db 2\pi b P_{NH}(b) \int_{0}^{r_{A}} \frac{r dr}{\pi r_{A}^{2}} \int_{0}^{2\pi} d\phi n(k, b + r \cos(\phi))$$

$$n^{U}(y) = k \int_{0}^{\infty} db 2\pi b P_{NH}(b) \int_{0}^{r_{A}} \frac{r dr}{\pi r_{A}^{2}} \int_{0}^{2\pi} d\phi n(k, b + r \cos(\phi))$$

Probability of no hadronic interaction

Flux in UPC collisions

Nuclear thickness

$$T_A(ec{r}) = \int dz
ho(\sqrt{|ec{r}|^2 + z^2})$$

 $P_{NH}(b) = \mathbf{e}$

Probability of no hadronic interaction

$$T_{AA}(|\vec{b}|) = \int d^{2}\vec{r}T_{A}(\vec{r})T_{A}(\vec{r}-\vec{b})$$
Nuclear overlap
$$\exp(-T_{AA}\sigma_{NN})$$

$$\int_{0}^{r_{A}} \frac{rdr}{\pi r_{A}^{2}} \int_{0}^{2\pi} d\phi n(k, b+r\cos(\phi))$$

Flux in UPC collisions

Nuclear thickness

$$T_A(ec{r}) = \int dz
ho(\sqrt{|ec{r}|^2 + z^2})$$

 $P_{NH}(b) = e$

Probability of no hadronic interaction

$$T_{AA}(|\vec{b}|) = \int d^{2}\vec{r}T_{A}(\vec{r})T_{A}(\vec{r}-\vec{b})$$

Nuclear overlap
$$\sum_{k=1}^{n} \sum_{k=1}^{n} \sum_$$

Flux in peripheral collisions

Probability of hadronic interaction

 $n^{P}(y) = k \int_{b_{\min}}^{b_{\max}} db 2\pi b \left(1 - P_{NH}(b)\right) \int_{0}^{r_{A}} rac{r dr}{\pi r_{A}^{2}} \int_{0}^{2\pi} d\phi n(k, b + r\cos(\phi))$

Coherent photonuclear cross section

Using the procedure outlined previously:

$$egin{aligned} &\sigma(y=-3.25)\,=\,5.2\pm1.0\,\,\mu\mathrm{b},\ &\sigma(y=0)\,=\,15.0\pm2.7\,\,\mu\mathrm{b},\ &\sigma(y=3.25)\,=\,38\pm15\,\,\mu\mathrm{b}, \end{aligned}$$

Coherent photonuclear cross section

$$egin{aligned} &\sigma(y=-3.25)=5.2\pm1.0~\mu{
m b},\ &\sigma(y=0)=15.0\pm2.7~\mu{
m b},\ &\sigma(y=3.25)=38\pm15~\mu{
m b}, \end{aligned}$$

Suppression factor

Extracting the nuclear suppression factor Data from the procedure just described $S_{\rm Pb}(W_{\gamma \rm Pb}) = \left(\frac{\sigma_{\gamma \rm Pb}^{\rm data}(W_{\gamma \rm Pb})}{\sigma_{\gamma \rm Pb}^{\rm IA}(W_{\gamma \rm Pb})}\right)^{1/2}$ Impulse approximation $\sigma_{\gamma \rm Pb}^{\rm IA}(W_{\gamma \rm Pb}) = \frac{d\sigma_{\gamma \rm p}(W_{\gamma \rm p} = W_{\gamma \rm Pb}, t = 0)}{dt} \Phi_{\rm Pb}(|t|_{\rm min}).$ $\Phi_A(t_{\min}) = \int dt |F_{WS}(t)|^2$ $J_{t_{\min}}$

Nuclear suppression factor

The nuclear suppression factor

Using the previous formulas

$$S(W_{\gamma
m Pb} = 18.2 ~{
m GeV}) = 0.74 \pm 0.10, \ S(W_{\gamma
m Pb} = 92.4 ~{
m GeV}) = 0.57 \pm 0.06, \ S(W_{\gamma
m Pb} = 469.5 ~{
m GeV}) = 0.47 \pm 0.09,$$

- Using peripheral and ultra-peripheral data it is possible to extract the photonuclear
- - with the distribution obtained for UPC
 - The number of participants in this centrality class is small
- easy comparison to different models.

Summary and outlook

coherent cross section at different rapidities/centre-of-mass energies/Bjorken-x values

• The main assumption is that one can use the standard formalism for the photon fluxes This is justified, for the current somehow large experimental errors, because • The shape of the pt distribution for j/psi in the centrality class 70-90 is compatible

• Using the extracted cross sections one can construct a nuclear suppression factor to allow

