Diffractive DIS Computation framework 00000000 0000

ork NLO open production

n Dijet production

Vector meson production

Phenomenological applications 000000000

Exclusive diffractive processes with saturation at NLO accuracy

Renaud Boussarie

Institute of Nuclear Physics Polish Academy of Science Cracow

QCD challenges, Trento, February 2017

RB, A.V.Grabovsky, L.Szymanowski, S.Wallon JHEP 409 (2014) 026 and JHEP 1611 (2016) 149 RB, A.V.Grabovsky, D.Yu.Ivanov, L.Szymanowski, S.Wallon arXiv:1612.08026 [hep-ph]

Diffractive DIS Computation framework NLO open production Dijet production Vector meson production Phenomenological applications •0000000 0000 00000 00000 00000 00000 00000 00000 00000 00000 000000 000000 00000 000000 <

Observables to probe small-x QCD and saturation physics

- Perturbation theory should apply : a hard scale Q^2 is required
- One needs semihard kinematics : $s \gg p_T^2 \gg \Lambda_{QCD}^2$ where all the typical transverse scales p_T are of the same order
- Saturation is reached when $Q^2 \sim Q_s^2 \propto \left(\frac{A}{x}\right)^{\frac{1}{3}}$: the smaller $x \sim \frac{Q^2}{s}$ is and the heavier the target ion, the easier saturation is reached.
- Typical processes : DIS, Mueller-Navelet double jets, ultraperipheral events at the LHC...

Precision tests of high-energy dynamics

- BFKL and B-JIMWLK kernels are known at NLL accuracy, resumming α_s(α_s log s)ⁿ corrections (Lipatov, Fadin ; Camici, Ciafaloni ; Balitsky, Chirilli ; Kovner, Lublinsky, Mulian)
- Very few impact factors are known at NLO accuracy
 - $\gamma^* \rightarrow \gamma^*$ (Bartels, Colferai, Gieseke, Kyrielis, Qiao; Balitsky, Chirilli; Beuf?)
 - Forward jet production (Bartels, Colferai, Vacca ; Caporale, Ivanov, Murdaca, Papa, Perri; Chachamis, Hentschinski, Madrigal, Sabio Vera)
 - Inclusive production of a pair of hadrons separated by a large interval of rapidity (Ivanov, Papa)
 - $\gamma_L^* \rightarrow V_L$ in the forward limit (Ivanov, Kostsky, Papa)

Diffractive DIS	Computation framework	NLO open production	Dijet production		Phenomenological applications
00000000	0000	0000000000000	000000	0000	00000000
Diffractiv	ve DIS				

Rapidity gap events at HERA

Experiments at HERA : about 10% of scattering events reveal a rapidity gap

DIS events

DDIS events

DIS : Deep Inelastic Scattering, DDIS : Diffractive DIS

Rapidity gap events at HERA

Experiments at HERA : about 10% of events reveal a rapidity gap

Diffractive DIS 00000000	Computation framework	NLO open production	Dijet production 000000	Vector meson production	Phenomenological applications 000000000
Diffractiv	ve DIS				

Theoretical approaches for DDIS using pQCD

- Collinear factorization approach
 - Relies on a QCD factorization theorem, using a hard scale such as the virtuality Q² of the incoming photon
 - One needs to introduce a diffractive distribution function for partons within a pomeron
- k_T factorization approach for two exchanged gluons
 - low-x QCD approach : $s \gg Q^2 \gg \Lambda_{QCD}$
 - The pomeron is described as a two-gluon color-singlet state

Theoretical approaches for DDIS using pQCD

Collinear factorization approach

k_T -factorization approach : two gluon exchange

Bartels, Ivanov, Jung, Lotter, Wüsthoff Braun and Ivanov developed a similar model in collinear factorization

Confrontation of the two approaches with HERA data

ZEUS collaboration, 2015

Diffractive DIS	Computation framework

LO open production

roduction Vector m

Vector meson production 0000 Phenomenological applications 000000000

NLO computations

in the shockwave (CGC) framework

One decomposes the gluon field ${\cal A}$ into an internal field and an external field :

$$\mathcal{A}^{\mu} = \mathbf{A}^{\mu} + b^{\mu}$$

The internal one contains the gluons with $p_g^+ > e^{\eta} p_{\gamma}^+$ and the external one contains the gluons with $p_g^+ < e^{\eta} p_{\gamma}^+$. One writes :

$$b_{\eta}^{\mu}\left(z
ight)=\delta\left(z^{+}
ight)B_{\eta}\left(ec{z}
ight)n_{2}^{\mu}$$

Intuitively, large boost Λ along the + direction :

$$b^{+} (x^{+}, x^{-}, \vec{x}) \rightarrow \frac{1}{\Lambda} b^{+} \left(\Lambda x^{+}, \frac{1}{\Lambda} x^{-}, \vec{x}\right)$$

$$b^{-} (x^{+}, x^{-}, \vec{x}) \rightarrow \Lambda b^{-} \left(\Lambda x^{+}, \frac{1}{\Lambda} x^{-}, \vec{x}\right)$$

$$b^{-} (x^{+}, x^{-}, \vec{x}) \rightarrow \Lambda b^{-} \left(\Lambda x^{+}, \frac{1}{\Lambda} x^{-}, \vec{x}\right)$$

$$b^{i} (x^{+}, x^{-}, \vec{x}) \rightarrow b^{i} \left(\Lambda x^{+}, \frac{1}{\Lambda} x^{-}, \vec{x}\right)$$
Lightcone variables $x^{+} \equiv \frac{x^{0} + x^{3}}{\sqrt{2}}, \quad x^{-} \equiv \frac{x^{0} - x^{3}}{\sqrt{2}}$

Propagator through a shockwave

$$G(z_{2}, z_{0}) = -\int d^{4}z_{1}\theta(z_{2}^{+}) \,\delta(z_{1}^{+}) \,\theta(-z_{0}^{+}) \,G(z_{2} - z_{1}) \,\gamma^{+}G(z_{1} - z_{0}) \,U_{1}$$
$$G(q, p) = (2\pi) \,\theta(p^{+}) \int d^{D}q_{1}\delta(q + q_{1} - p) \,\delta(q_{1}^{+})G(q) \,\gamma^{+}\tilde{U}_{\vec{q}_{1}}G(p)$$

Wilson lines :

$$U^\eta_i = U^\eta_{ec z_i} = extsf{P} \exp\left[ig \int_{-\infty}^{+\infty} b^-_\eta(z^+_i, ec z_i) \, dz^+_i
ight]$$

Dipole operator

$$\mathbf{U}_{12}^{\eta} = \frac{1}{N_c} \mathrm{Tr} \left(U_1^{\eta} U_2^{\eta \dagger} \right) - 1$$

B-JIMWLK equation

[Balitsky, Jalilian-Marian, Iancu, McLerran, Weigert, Leonidov, Kovner]

$$\frac{\partial \mathbf{U}_{12}^{\eta}}{\partial \eta} = \frac{\alpha_s N_c}{2\pi^2} \int d\vec{z}_3 \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \vec{z}_{23}^2} \left[\mathbf{U}_{13}^{\eta} + \mathbf{U}_{32}^{\eta} - \mathbf{U}_{12}^{\eta} - \mathbf{U}_{13}^{\eta} \mathbf{U}_{32}^{\eta} \right]$$
$$\frac{\partial \mathbf{U}_{13}^{\eta} \mathbf{U}_{32}^{\eta}}{\partial \eta} = \dots$$

Evolves a dipole into a double dipole

	Computation framework	NLO open production	Dijet production	Phenomenological applications
	0000	0000000000000		
The BK	equation			

Mean field approximation, or 't Hooft limit $N_c \rightarrow \infty$ in Balitsky's equation

⇒ BK equation [Balitsky, 1995] [Kovchegov, 1999]

$$\frac{\partial \langle \mathbf{U}_{12}^{\eta} \rangle}{\partial \eta} = \frac{\alpha_s N_c}{2\pi^2} \int d\vec{z}_3 \frac{\vec{z}_{12}^2}{\vec{z}_{13}^2 \vec{z}_{23}^2} \left[\langle \mathbf{U}_{13}^{\eta} \rangle + \rangle \mathbf{U}_{32}^{\eta} \rangle - \langle \mathbf{U}_{12}^{\eta} \rangle - \langle \mathbf{U}_{13}^{\eta} \rangle \langle \mathbf{U}_{32}^{\eta} \rangle \right]$$

Non-linear term : saturation

Computation	

NLO open production

Dijet production V 000000 0

Vector meson production 0000 Phenomenological applications 000000000

First step

NLO open $q\bar{q}$ production and LO $q\bar{q}g$ production

Diffractive DIS 00000000	Computation framework	NLO open production 000000000000000000000000000000000000	Dijet production 000000	Vector meson production 0000	Phenomenological applications
Assumpt	ions				

- Regge-Gribov limit : $s \gg Q^2 \gg \Lambda_{QCD}$
- Otherwise completely general kinematics
- Shockwave (CGC) Wilson line approach
- Transverse dimensional regularization $d = 2 + 2\varepsilon$, longitudinal cutoff

 $p_g^+ < \alpha p_\gamma^+$

Leading Order						
00000000	0000	000000000000	000000	0000	00000000	
	Computation framework	NLO open production	Dijet production		Phenomenological applications	

$$\mathcal{A}_{0} = \varepsilon_{\alpha} N_{c} \int d^{d} \vec{p}_{1} d^{d} \vec{p}_{2} \Phi_{0}^{\alpha} \left(\vec{p}_{1}, \vec{p}_{2} \right) \delta \left(\vec{p}_{q1} + \vec{p}_{\bar{q}2} \right) \tilde{\mathsf{U}}_{12}^{\alpha}$$

 $p_{ij} \equiv p_i - p_j$

NLO open production

Vector meson production

First kind of virtual corrections

	Computation framework	NLO open production	Dijet production		Phenomenological applicati
00000000	0000	000000000000000000000000000000000000000	000000	0000	00000000

Second kind of virtual corrections

	omputation framework	NLO open production	Dijet production		Phenomenological applications
00000000 0	0000	000000000000000000	000000	0000	00000000

First kind of real corrections

$$\mathcal{A}_{R1} = \varepsilon_{\alpha} N_{c} \int d^{d} \vec{p}_{1} d^{d} \vec{p}_{2} \Phi_{R1}^{\alpha} (\vec{p}_{1}, \vec{p}_{2}) \delta (\vec{p}_{q1} + \vec{p}_{\bar{q}2} + \vec{p}_{g}) \left(\frac{N_{c}^{2} - 1}{N_{c}} \right) \tilde{\mathbf{U}}_{12}^{\alpha}$$

Second kind of real corrections

$$\mathcal{A}_{R2} = \varepsilon_{\alpha} N_c \int d^d \vec{p}_1 d^d \vec{p}_2 d^d \vec{p}_3 \Phi_{R2}^{\alpha} (\vec{p}_1, \vec{p}_2, \vec{p}_3) \delta (\vec{p}_{q1} + \vec{p}_{\bar{q}2} + \vec{p}_{g3}) \\ \left[\left(\frac{N_c^2 - 1}{N_c} \right) \tilde{\mathbf{U}}_{12}^{\alpha} \delta (\vec{p}_3) + N_c \left(\tilde{\mathbf{U}}_{13}^{\alpha} \tilde{\mathbf{U}}_{32}^{\alpha} + \tilde{\mathbf{U}}_{13}^{\alpha} + \tilde{\mathbf{U}}_{32}^{\alpha} - \tilde{\mathbf{U}}_{12}^{\alpha} \right) \right]$$

Diffractive DIS 00000000	Computation framework	NLO open production	Dijet production 000000	Vector meson production	Phenomenological applications
Divergences					

- Rapidity divergence $p_g^+ \rightarrow 0$ $\Phi_{V2} \Phi_0^* + \Phi_0 \Phi_{V2}^*$
- UV divergence $\vec{p}_g^2 \to +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

B-JIMWLK evolution of the LO term : $\Phi_0 \otimes \mathcal{K}_{BK}$

Rapidity divergence

B-JIMWLK equation

$$\begin{split} &\frac{\partial \tilde{\mathbf{U}}_{12}^{\alpha}}{\partial \log \alpha} = 2\alpha_{s}N_{c}\mu^{2-d} \int \frac{d^{d}\vec{k}_{1}d^{d}\vec{k}_{2}d^{d}\vec{k}_{3}}{(2\pi)^{2d}} \delta(\vec{k}_{1}+\vec{k}_{2}+\vec{k}_{3}-\vec{p}_{1}-\vec{p}_{2}) \Big(\tilde{\mathbf{U}}_{13}^{\alpha}\tilde{\mathbf{U}}_{32}^{\alpha}+\tilde{\mathbf{U}}_{13}^{\alpha}+\tilde{\mathbf{U}}_{32}^{\alpha}-\tilde{\mathbf{U}}_{12}^{\alpha}\Big) \\ &\times \left[2\frac{(\vec{k}_{1}-\vec{p}_{1})\cdot(\vec{k}_{2}-\vec{p}_{2})}{(\vec{k}_{1}-\vec{p}_{1})^{2}(\vec{k}_{2}-\vec{p}_{2})^{2}}+\frac{\pi^{\frac{d}{2}}\Gamma(1-\frac{d}{2})\Gamma^{2}(\frac{d}{2})}{\Gamma(d-1)}\left(\frac{\delta(\vec{k}_{2}-\vec{p}_{2})}{\left[(\vec{k}_{1}-\vec{p}_{1})^{2}\right]^{1-\frac{d}{2}}}+\frac{\delta(\vec{k}_{1}-\vec{p}_{1})}{\left[(\vec{k}_{2}-\vec{p}_{2})^{2}\right]^{1-\frac{d}{2}}}\right)\right] \end{split}$$

 η rapidity divide, which separates the upper and the lower impact factors

$$\tilde{\mathbf{U}}_{12}^{\alpha} \Phi_{0} \rightarrow \Phi_{0} \tilde{\mathbf{U}}_{12}^{\eta} + \log \left(\frac{\mathbf{e}^{\eta}}{\alpha}\right) \mathcal{K}_{BK} \Phi_{0} \left(\tilde{\mathbf{U}}_{13} \tilde{\mathbf{U}}_{32} + \tilde{\mathbf{U}}_{13} + \tilde{\mathbf{U}}_{32} - \tilde{\mathbf{U}}_{12}\right)$$

Diffractive DIS 00000000	Computation framework	NLO open production	Dijet production 000000	Vector meson production	Phenomenological applications
Rapidity	divergence				

Virtual contribution

$$(\Phi^{\mu}_{V2})_{div} \propto \Phi^{\mu}_0 \left\{ 4 \ln \left(\frac{x \bar{x}}{\alpha^2} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

BK contribution

$$(\Phi^{\mu}_{BK})_{div} \propto \Phi^{\mu}_{0} \left\{ 4 \ln \left(rac{lpha^{2}}{e^{2\eta}}
ight) \left[rac{1}{arepsilon} + \ln \left(rac{ec{m{p}_{3}}^{2}}{\mu^{2}}
ight)
ight]
ight\}$$

Sum : the α dependence cancels

$$(\Phi_{V2}^{\prime\mu})_{div} \propto \Phi_0^{\mu} \left\{ 4 \ln \left(\frac{x \bar{x}}{e^{2\eta}} \right) \left[\frac{1}{\varepsilon} + \ln \left(\frac{\vec{p_3}^2}{\mu^2} \right) \right] - \frac{6}{\varepsilon} \right\}$$

Rapidity divergence

Cancellation of the remaining $1/\epsilon$ divergence

Convolution

$$\begin{aligned} (\Phi_{V2}^{\prime\mu}\otimes \mathbf{U}\mathbf{U}) &= \int d^d\vec{p}_1 d^d\vec{p}_2 d^d\vec{p}_3 \left\{ 4\ln\left(\frac{x\bar{x}}{e^{2\eta}}\right) \left[\frac{1}{\varepsilon} + \ln\left(\frac{\vec{p}_3^2}{\mu^2}\right)\right] - \frac{6}{\varepsilon} \right\} \\ &\times \quad \delta(\vec{p}_{q1} + \vec{p}_{\bar{q}2} - \vec{p}_3) \left[\tilde{\mathbf{U}}_{13} + \tilde{\mathbf{U}}_{32} - \tilde{\mathbf{U}}_{12} - \tilde{\mathbf{U}}_{13}\tilde{\mathbf{U}}_{32}\right] \Phi_0^{\mu}(\vec{p}_1, \vec{p}_2) \end{aligned}$$

Rq:

- $\Phi_0(\vec{p_1}, \vec{p_2})$ only depends on one of the *t*-channel momenta.
- The double-dipole operators cancels when $\vec{z_3} = \vec{z_1}$ or $\vec{z_3} = \vec{z_2}$.

This permits one to show that the convolution cancels the remaining $\frac{1}{\varepsilon}$ divergence.

Then
$$\tilde{\mathbf{U}}_{12}^{\alpha} \Phi_0 + \Phi_{V2}$$
 is finite

Diffractive DIS 00000000	Computation framework	NLO open production	Dijet production 000000	Vector meson production	Phenomenological applications
Divergences					

• Rapidity divergence

- UV divergence $\vec{p}_g^2 \to +\infty$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*$
- Soft divergence $p_g \rightarrow 0$ $\Phi_{V1} \Phi_0^* + \Phi_0 \Phi_{V1}^*, \Phi_{R1} \Phi_{R1}^*$
- Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$ $\Phi_{R1} \Phi_{R1}^*$
- Soft and collinear divergence $p_g = \frac{p_g^+}{p_q^+} p_q$ or $\frac{p_g^+}{p_q^+} p_{\bar{q}}$, $p_g^+ \to 0$ $\Phi_{R1} \Phi_{R1}^*$

Computation framework	NLO open production	Dijet production	Phenomenological applications
		00000	

Constructing a finite cross section

Exclusive diffractive production of a forward dijet

From partons to jets

Jet cone algorithm

We define a cone width for each pair of particles with momenta p_i and p_k , rapidity difference ΔY_{ik} and relative azimuthal angle $\Delta \varphi_{ik}$

$$\left(\Delta Y_{ik}\right)^2 + \left(\Delta \varphi_{ik}\right)^2 = R_{ik}^2$$

If $R_{ik}^2 < R^2$, then the two particles together define a single jet of momentum $p_i + p_k$.

Applying this in the small R^2 limit cancels our soft and collinear divergence.

Remaining divergence

• UV divergence $\vec{p}_g^2 \to +\infty$

$$\Phi_{V1}\Phi_0^* + \Phi_0\Phi_{V1}^*$$

• Soft divergence $p_g \rightarrow 0$

$$\Phi_{V1}\Phi_0^* + \Phi_0\Phi_{V1}^*, \Phi_{R1}\Phi_{R1}^*$$

• Collinear divergence $p_g \propto p_q$ or $p_{\bar{q}}$

 $\Phi_{R1}\Phi_{R1}^*$

Demototo	and the second second				
00000000	0000	0000000000000	000000	0000	00000000
Diffractive DIS	Computation framework	NLO open production	Dijet production	Vector meson production	Phenomenological applications

Remaining divergence

Soft real emission

$$\left(\Phi_{R1}\Phi_{R1}^{*}\right)_{soft} \propto \left(\Phi_{0}\Phi_{0}^{*}\right) \int_{\text{outside the cones}} \left|\frac{p_{q}^{\mu}}{(p_{q}.p_{g})} - \frac{p_{\bar{q}}^{\mu}}{(p_{\bar{q}}.p_{g})}\right|^{2} \frac{dp_{g}^{+}}{p_{g}^{+}} \frac{d^{d}p_{g}}{(2\pi)^{d}}$$

Collinear real emission

$$\left(\Phi_{\text{R1}}\Phi_{\text{R1}}^{*}\right)_{\text{col}}\propto\left(\Phi_{0}\Phi_{0}^{*}\right)\left(\mathcal{N}_{\text{q}}+\mathcal{N}_{\bar{\text{q}}}\right)$$

Where $\ensuremath{\mathcal{N}}$ is the number of jets in the quark or the antiquark

$$\mathcal{N}_{k} = \frac{(4\pi)^{\frac{d}{2}}}{\Gamma(2-\frac{d}{2})} \int_{\alpha p_{\gamma}^{+}}^{p_{jet}^{+}} \frac{dp_{g}^{+} dp_{k}^{+}}{2p_{g}^{+} 2p_{k}^{+}} \int_{\text{in cone } k} \frac{d^{d} \vec{p}_{g} d^{d} \vec{p}_{k}}{(2\pi)^{d} \mu^{d-2}} \frac{\text{Tr}\left(\hat{p}_{k} \gamma^{\mu} \hat{p}_{jet} \gamma^{\nu}\right) d_{\mu\nu}(p_{g})}{2p_{jet}^{+} \left(p_{k}^{-} + p_{g}^{-} - p_{jet}^{-}\right)^{2}}$$

Those two contributions cancel exactly the virtual divergences (both UV and soft)

	Computation framework	NLO open production	Dijet production		Phenomenological applications
00000000	0000	0000000000000	000000	0000	00000000

Cancellation of divergences

Total divergence

$$(d\sigma_1)_{div} = \alpha_s \frac{\Gamma(1-\varepsilon)}{(4\pi)^{1+\varepsilon}} \left(\frac{N_c^2-1}{2N_c}\right) (S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}) d\sigma_0$$

Virtual contribution

$$S_{V} = \left[2\ln\left(\frac{x_{j}x_{j}^{2}}{\alpha^{2}}\right) - 3\right] \left[\ln\left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}\vec{p}_{j} - x_{j}\vec{p}_{j})^{2}}\right) - \frac{1}{\epsilon}\right] + 2i\pi\ln\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) + \ln^{2}\left(\frac{x_{j}x_{j}}{\alpha^{2}}\right) - \frac{\pi^{2}}{3} + 6$$

Real contribution

$$\begin{split} S_{R} + \mathcal{N}_{jet1} + \mathcal{N}_{jet2} &= 2 \left[\ln \left(\frac{(x_{j}^{}\vec{p}_{j}^{} - x_{j}\vec{p}_{j}^{})^{4}}{x_{j}^{2}x_{j}^{2}R^{4}\vec{p}_{j}^{2}\vec{p}_{j}^{2}} \right) \ln \left(\frac{4E^{2}}{x_{j}x_{j}(p_{\gamma}^{+})^{2}} \right) \\ &+ 2 \ln \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \left(\frac{1}{\epsilon} - \ln \left(\frac{x_{j}x_{j}\mu^{2}}{(x_{j}^{}\vec{p}_{j}^{} - x_{j}\vec{p}_{j}^{})^{2}} \right) \right) - \ln^{2} \left(\frac{x_{j}x_{j}}{\alpha^{2}} \right) \\ &+ \frac{3}{2} \ln \left(\frac{16\mu^{4}}{R^{4}\vec{p}_{j}^{2}\vec{p}_{j}^{2}} \right) - \ln \left(\frac{x_{j}}{x_{j}} \right) \ln \left(\frac{x_{j}\vec{p}_{j}^{2}}{x_{j}\vec{p}_{j}^{2}} \right) - \frac{3}{\epsilon} - \frac{2\pi^{2}}{3} + 7 \right] \end{split}$$

Cancellation of divergences

Total divergence

$$div = S_V + S_V^* + S_R + \mathcal{N}_{jet1} + \mathcal{N}_{jet2}$$

$$= 4 \left[\frac{1}{2} \ln \left(\frac{(x_{\bar{j}} \vec{p}_{j} - x_{j} \vec{p}_{\bar{j}})^{4}}{x_{\bar{j}}^{2} x_{j}^{2} R^{4} \vec{p}_{\bar{j}}^{2} \vec{p}_{j}^{2}} \right) \left(\ln \left(\frac{4E^{2}}{x_{\bar{j}} x_{j} (p_{\gamma}^{+})^{2}} \right) + \frac{3}{2} \right) \right. \\ \left. + \ln \left(8 \right) - \frac{1}{2} \ln \left(\frac{x_{j}}{x_{\bar{j}}} \right) \ln \left(\frac{x_{j} \vec{p}_{j}^{2}}{x_{\bar{j}} \vec{p}_{j}^{2}} \right) + \frac{13 - \pi^{2}}{2} \right]$$

Our cross section is thus finite

	Computation framework	NLO open production	Dijet production	Vector meson production	Phenomenological applications
00000000	0000	000000000000000000000000000000000000000	000000	● 000	00000000

Constructing a finite amplitude

Exclusive diffractive production of a light neutral vector meson

Diffractive DIS Computation framework

NLO open production

Dijet production

Vector meson production 0000

Exclusive diffractive production of a light neutral vector meson

$$\begin{split} h_{0} &= -\frac{\mathbf{e}_{V} f_{V} \varepsilon_{\beta}}{N_{c}} \int_{0}^{1} dx \varphi_{\parallel} (x) \int \frac{d^{d} \vec{p}_{1}}{(2\pi)^{d}} \frac{d^{d} \vec{p}_{2}}{(2\pi)^{d}} \\ &\times (2\pi)^{d+1} \delta \left(p_{V}^{+} - p_{\gamma}^{+} \right) \delta \left(\vec{p}_{V} - \vec{p}_{\gamma} - \vec{p}_{1} - \vec{p}_{2} \right) \\ &\times \Phi_{0}^{\beta} (x, \vec{p}_{1}, \vec{p}_{2}) \tilde{\mathbf{U}}_{12}^{\eta}. \end{split}$$

Leading twist for a longitudinally polarized meson

Otherwise general kinematics, including transverse virtual photon (twist 3) contributions, and the photoproduction limit (for large t-channel momentum transfer)

Evolution equation for the distribution amplitude in the \overline{MS} scheme

$$\frac{\partial \varphi(x,\mu_F^2)}{\partial \ln \mu_F^2} = \frac{\alpha_s C_F}{2\pi} \frac{\Gamma(1-\epsilon)}{(4\pi)^{\epsilon}} \left(\frac{\mu_F^2}{\mu^2}\right)^{\epsilon} \int_0^1 dz \varphi(z,\mu_F^2) \mathcal{K}(x,z),$$

where we parameterize the ERBL kernel for consistency as

$$\mathcal{K}(x, z) = \frac{x}{z} \left[1 + \frac{1}{z - x} \right] \theta(z - x - \alpha)$$

+
$$\frac{1 - x}{1 - z} \left[1 + \frac{1}{x - z} \right] \theta(x - z - \alpha)$$

+
$$\left[\frac{3}{2} - \ln \left(\frac{x(1 - x)}{\alpha^2} \right) \right] \delta(z - x).$$

It is equivalent to the usual ERBL kernel

Infrared	finiteness				
Diffractive DIS 00000000	Computation framework	NLO open production 00000000000000	Dijet production 000000	Vector meson production	Phenomenological applications 000000000

The amplitude we obtain is finite. For example the dipole $\gamma_{\rm L}^* \to V_{\rm L}$ contribution reads

$$\begin{split} \Phi_{1}^{+}\left(x\right) &= \int_{0}^{x} dz \left(\frac{x-z}{x}\right) \Phi_{0}^{+}\left(x-z\right) \\ &\times \left[1 + \left(1 + \left[\frac{1}{z}\right]_{+}\right) \ln \left(\frac{\left(\left((\bar{x}+z)\vec{p}_{1} - (x-z)\vec{p}_{2}\right)^{2} + (x-z)(\bar{x}+z)Q^{2}\right)^{2}}{\mu_{F}^{2}(x-z)(\bar{x}+z)Q^{2}}\right)\right] \\ &+ \left[\frac{1}{2} \Phi_{0}^{+}\left(x\right) \left[\frac{1}{2} \ln^{2}\left(\frac{\bar{x}}{x}\right) + 3 - \frac{\pi^{2}}{6} - \frac{3}{2} \ln \left(\frac{\left((\bar{x}\vec{p}_{1} - x\vec{p}_{2})^{2} + x\bar{x}Q^{2}\right)^{2}}{x\bar{x}\mu_{F}^{2}Q^{2}}\right)\right] \\ &+ \left[\frac{(p_{\gamma}^{+})^{2}}{2x\bar{x}}\int_{0}^{x} dz \left[(\phi_{5})_{LL}|_{\vec{p}_{3}=\vec{0}} + (\phi_{6})_{LL}|_{\vec{p}_{3}=\vec{0}}\right]_{+} + (x \leftrightarrow \bar{x}, \vec{p}_{1} \leftrightarrow \vec{p}_{2}). \end{split}$$

No end point singularity, even for a transverse photon and even in the photoproduction limit.

	Computation framework	NLO open production	Dijet production		Phenomenological applications
00000000	0000	000000000000000000000000000000000000000	000000	0000	00000000

Practical use of such results for phenomenology

• Build non-perturbative initial conditions for the scattering matrix elements

$$\langle P'|\tilde{\mathbf{U}}_{12}^{\eta}|P
angle, \quad \langle P'|\tilde{\mathbf{U}}_{13}^{\eta}\tilde{\mathbf{U}}_{32}^{\eta}|P
angle$$

- Solve the NLO JIMWLK evolution equation for the dipole and double-dipole operators with these initial conditions at a typical target rapidity $\eta = Y_0$
- Evaluate the resulting matrix elements at a typical projectile rapidity $\eta = Y$ and convolute them with the impact factor.

Residual	inarameter der	pendence			
Diffractive DIS	Computation framework	NLO open production	Dijet production	Vector meson production	Phenomenological applications

Required parameters

- Renormalization scale μ_R
- Factorization scale μ_F in the case of meson production
- Typical target rapidity Y_0
- Typical projectile rapidity Y

In the linear BFKL limit, the cross section only depends on $Y - Y_0$, so only one arbitrary parameter s_0 defined by

$$Y-Y_0=\ln\left(\frac{s}{s_0}\right)$$

is required.

General a	molitude				
00000000	0000	000000000000000000000000000000000000000	000000	0000	00000000
Diffractive DIS	Computation framework	NLO open production	Dijet production	Vector meson production	Phenomenological applications

- Most general kinematics
- The hard scale can be Q^2 , t, M_X^2 ...
- The target can be either a proton or an ion, or another impact factor.
- Finite results for $Q^2 = 0$
- One can study ultraperipheral collision by tagging the particle which emitted the photon, in the limit $Q^2 \rightarrow 0$.

The general amplitude

- HERA data for exclusive dijet production in diffractive DIS can be fitted with our results
- We can also give predictions for the same process in a future electron-ion or electron-proton collider (EIC, LHeC...)
- For $Q^2 = 0$ we can give predictions for ultraperipheral *pp* and *pA* collisions at the LHC

Amplitude for diffractive dijet production

• For $Q^2 = 0$ we can give predictions for ultraperipheral collisions at the LHC

Amplitude for diffractive trijet production

[Ayala, Hentschinski, Jalilian-Marian, Tejeda-Yeomans]

Diffractive DIS NLO open production Dijet production

Vector meson production

Phenomenological applications 000000000

Phenomenological applications

- Most general kinematics
- The hard scale can be Q^2 , t or m^2 .
- The target can be either a proton or an ion, or another impact factor.
- Finite results for $Q^2 = 0$
- One can study ultraperipheral collision by tagging the particle which emitted the photon, in the limit $Q^2 \rightarrow 0$.

Amplitude for diffractive V production

- The $\gamma_L^* \to V_L$ contribution in the forward limit should coincide with previous results of Ivanov, Kotsky, Papa
- The comparison is non-trivial due to additional contributions from the formal BFKL/BK transition

 $\Phi_{\mathit{BK}}\otimes\mathcal{K}_{\mathit{BK}}\otimes\Phi_{\mathit{BK}}'=(\Phi_{\mathit{BFKL}}\otimes\mathcal{O})(\mathcal{O}^{-1}\otimes\mathcal{K}_{\mathit{BFKL}}\mathcal{O})(\mathcal{O}^{-1}\otimes\Phi_{\mathit{BFKL}}')$

 $\ensuremath{\mathcal{O}}$ was obtained to prove the kernel equivalence, but never checked on an impact factor

Diffractive DIS 00000000	Computation framework	NLO open production	Dijet production 000000	Vector meson production 0000	Phenomenological applications
Conclusi	on				

- We provided the full computation of the impact factor for the exclusive diffractive production of a forward dijet and of a light neutral vector meson with NLO accuracy in the shockwave approach
- It leads to an enormous number of possible phenomenological applications to test QCD in its Regge limit and towards saturation in past, present and future *ep*, *eA*, *pp* and *pA* colliders
- Several theoretical extensions could be obtained with slight modifications to our result