# Open heavy-flavor and quarkonia production in STAR

#### **Petr Chaloupka**

for the STAR collaboration

Czech Technical University in Prague





#### **STAR experiment**



#### **Particle identification at STAR**



#### **Particle identification at STAR**



#### **Particle identification at STAR**



#### Muon telescope detector (MTD)



#### Heavy Flavor Tracker (HFT)



#### IST & SSD: Silicon pad/strip detectors

TOF

BBC

- Fast signals to remove pileup
- 14 cm and 22 cm from beam

#### PXL: 2 layers of silicon pixel (MAPS)

- Low material budget, 0.5% \* X<sub>0</sub> (2014)
- Excellent resolution

TPC

- Pitch 20.7 μm x 20.7 μm
- 2.8 cm and 8 cm from beam



# Open heavy flavor

- Produced early -> experience the entire evolution of the system
- Mass hierarchy:
  - Energy loss mechanisms: radiative vs. collisional
  - Thermalization in medium is mass dependent: Are charm and bottom quarks thermalized?
- Compare different charm hadron yields to study hadronization process



STAR: PRD 86 (2012) 072013, NPA 931 (2014) 520 CDF: PRL 91 (2003) 241804; ALICE: JHEP01 (2012) 128 FONLL: PRL 95 (2005) 122001

## **D<sup>0</sup> reconstruction with HFT**

- Topological reconstruction with HFT
  - $\begin{array}{l} D^0(\overline{D^0}) \mathop{\rightarrow} K^{\scriptscriptstyle \mp} \pi^{\scriptscriptstyle \pm}(BR \ 3.89\%) \\ c\tau \approx 120\,\mu m \end{array}$
  - ~ 4 orders reduction of combinatorial background
  - cuts optimized using TMVA





|                   | w/o HFT     | w HFT        |
|-------------------|-------------|--------------|
|                   | 2010+2011   | 2014         |
| # events (MB)     | 1.1 billion | ~900 million |
| Sig./ bill. evts. | 13*         | 220          |

\*L. Adamczyk et al. (STAR), PRL113 142301 arXiv:1701.06060

# Elliptic Flow of D<sup>0</sup>



Submitted: arXiv:1701.06060

- Mass ordering for p<sub>T</sub> < 2 GeV/c</p>
- Similar to other light mesons
   for p<sub>T</sub> > 2 GeV/c
- D<sup>0</sup> v<sub>2</sub> follows NCQ scaling

# Suggest that charm quarks flow with the medium.

### **Comparison to models**



- Values for the diffusion coeff. extracted from models and compared to STAR data
  - Agree with models with charm diffusion coefficient of 2-5 at  $T_c$  and temperature dependent range of ~2-12 at  $T_c$  to  $2T_c$
  - Consistent with Lattice calculations

SUBATECH: pQCD + hard thermal loop

P. B. Gossiaux, J. Aichelin, T. Gousset, and V. Guiho, SQM

TAMU: T-matrix, non-perturbative model w. internal energy potential

M. He, R. J. Fries, and R. Rapp, PRC86, 014903 (2012)

Duke: free constant Ds, fit to LHC high-p<sub>T</sub> R<sub>AA</sub>

S. Cao, G.-Y. Qin, and S. A. Bass, PRC88, 044907 (2013)

hydro: 3D viscous hydrodynamic model

L.-G. Pang, Y. Hatta, X.-N. Wang, B.-W. Xiao, PRD91, 074027 (2015)

PHSD: Parton-Hadron-String Dynamics, a transport model

H. Berrehrah et al. PRC90 (2014) 051901

LBT: A Linearized Boltzmann Transport model

S. Cao, T. Luo, G.-Y. Qin, and X.-N. Wang, PRC94, 014909 (2016)

Lattice: H.T.Ding et al., Int. J. Mod. Phys., E24, 1530007 (2015)
D. Banerjee et al., Phys. Rev. D85, 014510 (2012).

# Triangular Flow of D<sup>0</sup>



# First $D^0 v_3$ measurement at RHIC

- D<sup>0</sup> v<sub>3</sub> is non-zero
  - importance of initial fluctuations.
  - consistent with NCQ scaling within large error bars.
  - D<sup>0</sup> v<sub>2</sub> and v<sub>3</sub> -> strong collective behavior
- Further improvement 2B events from 2016

# D<sup>±</sup> production

 $\begin{array}{l} D^{\pm} \longrightarrow K \stackrel{\mp}{=} \pi \stackrel{\pm}{=} \pi \stackrel{\pm}{=} \\ c\tau = 311.8 \ \mu m \end{array}$ 



- Topological reconstruction in 0-10% central Au+Au collisions using 2014 data
- Extracted yield for 2< p<sub>T</sub> <8 GeV/c</p>
  - Consistent with D<sup>0</sup>
- Strong suppression at high p<sub>T</sub>
  - Indication of substantial energy loss



# **D**<sub>s</sub> production



Study of hadronization mechanism

 $\mathbf{Au+Au} @ 200 \text{ GeV} \qquad \bullet 0-10\%$   $STAR Preliminary \qquad \bullet 10-40\%$   $\int_{0}^{\infty} \int_{0}^{TAMU} \int_{0}^$ 

Transverse Momentum  $p_T$  (GeV/c)

TAMU: H. Min et al. PRL 110, 112301 (2013) M Lisovyi, et. al. EPJ C 76, 397 (2016)

- Strong enhancement of  $D_s/D^0$  ratio over PYTHIA
  - TAMU model underestimates data in 2.5-3.5 GeV/c
- No strong centrality dependence observed

# $\Lambda_{\rm c}$ production

#### First $\Lambda_{\rm c}$ reconstruction in A+A collisions

- Study of baryon-to-meson ratio
  - Coalescence
- Observed an enhancement of Λ<sub>c</sub> /D<sup>0</sup> ratio over PYTHIA
  - similar amplitude to light flavor hadrons
  - STAR: 1.3 ± 0.3(stat) ± 0.4(sys), PYTHIA: 0.1 0.15
  - Ko model (0-5%) with coalescence and thermalized charm quarks is consistent with data





STAR arXiv:nucl-ex/0601042 Ko model : Y. Oh, et.al. PRC 79,044905 (2009) Greco model : S.Ghosh, et. al. PRD 90,054018 (2014)

# **B** - production



- Separate measurements of c and b energy losses in the medium.
- Three ways of measuring B production at STAR

#### **B** - production



#### **B** - production



- Suppression observed in B->J/ψ and D<sup>0</sup>
- B->e is less suppressed than D->e (2σ effect)

# Open heavy-flavor summary

- Large non-zero D<sup>0</sup> v<sub>2</sub> and v<sub>3</sub> exhibiting strong collective behavior
  - suggesting charm quark thermalization with the medium
- Large suppression of D<sup>0</sup> and D<sup>±</sup> at high p<sub>T</sub>
  - strong interactions between charm quarks and the medium
- First measuremnt of  $\Lambda^+_c$  production in heavy-collisions
- Enhancement of  $\Lambda^+_{c}$  / D<sup>0</sup> and D<sup>+</sup><sub>s</sub> / D<sup>0</sup> ratios with respect to PYTHIA
  - Ratios comparable with light hadrons
  - Hadronization of charm quarks via coalescence
- B production measured via  $J/\psi$ , D<sup>0</sup> and electron decay channels in 200 GeV Au+Au collisions
  - Consistent with mass hierarchy in energy loss ( $\Delta E_c > \Delta E_b$ )
  - Suppression of  $B \rightarrow J/\Psi$  and  $B \rightarrow D^0$  in high  $p_T$  region
  - More high statistic data need for Bottom measurements.
- Outlook: 2016 Au+Au data (2B MB events and 1 nb<sup>-1</sup> (5 times 2014 data) high-p<sub>T</sub> electron sample on disk

### Quarkonia as a probe of QGP

- Large masses of c, b quarks
  - created during initial stages of collision

 Due to color screening of quark-antiquark potential in QGP, quarkonium dissociation is expected



H. Satz, Nucl. Phys. A (783):249-260(2007)



 Suppression determined by medium temperature and binding energy.

Sequential suppression of different quarkonium states is expected.

A. Mocsy, EPJ C61 (2009) 705

Quarkonia family:  $\bar{c}$ -c: J/ $\psi$ ,  $\psi$ ',  $\chi_c$  ...  $\bar{b}$ -b:  $\Upsilon(1S)$ ,  $\Upsilon(2S)$ ,  $\Upsilon(3S)$  ...

#### 21

### **Other effects**

- Quarkonium production mechanism is not well understood.
- Observed yields are a mixture of direct production + feed-down
  - Direct J/ $\psi$  (~60%) +feed-down ~30%  $\chi_c$  & ~10%  $\psi$  '
  - B-hadron decay
- Hot/dense medium effects
  - Coalescence from uncorrelated charm pairs.
- Suppression and enhancement in the "cold" nuclear medium
  - PDF modification in nucleus shadowing/antishadowing , color glass condensate
  - Initial state energy loss
  - Nuclear absorption break up of bound state precursor by collisions with passing nucleons
  - Dissociation by interaction with co-movers in final state

X. Zhao, R.Rapp, PRC82, 064905 (2010)

### STAR arXiv:1607.07517



Measure J/ $\psi$  at different  $p_T$ , in different colliding systems, and collision energies.

# $J/\psi$ in p+p at 200 and 500 GeV



- J/ψ production cross-section measured over wide  $p_T$  range in p+p 200 and 500 GeV  $p_T$  [GeV/c]
- Dimuon channel extending kinematic reach to low p<sub>T</sub> at 500 GeV
  - Agreement with dielectron channel
- CGC+NRQCD & NLO NRQCD describe data above 1 GeV/c
  - NRQCD includes direct and feed-down from excited states
- Improved CEM model describes 200 GeV data well at low p<sub>T</sub>
  - Includes direct production only
  - Data are above ICEM calculation at 3.5 < p<sub>T</sub> < 12 GeV/c</li>

CGC+NRQCD,

Ma & Venugopalan,

PRL

13

(2014) 19230

# $J/\psi$ in p+p at 200 and 500 GeV



- $p_T > 5$  GeV/c J/ψ production follows the  $x_T$  scaling of cross-section at mid-rapidity, with n ~ 5.6.
  - x<sub>T</sub> scaling breaking transition from hard to soft processes

# $J/\psi~R_{pAu}$ at 200 GeV



- $R_{pAu}$  is consistent with unity at high  $p_T$  and is less than unity at low  $p_T$
- R<sub>pAu</sub> is consistent with R<sub>dAu</sub> within uncertainties
  - Bit of tension at  $p_T 3.5 5$  GeV/c with a significance of 1.4 $\sigma$
- Suggest similar CNM effects in these collision systems

# $J/\psi R_{pAu}$ at 200 GeV



Models with only nPDF effects are on the upper limit of the data

- Large global uncertainty
- Data suggest additional nuclear absorption on top of nPDF effects

### $J/\psi$ in Au+Au at 200 GeV



First mid-rapidity measurement of J/ $\psi$  yield in Au+Au collisions via the di-muon channel for 0 <  $p_T$  < 15 GeV/c at RHIC

 Consistent with the published di-electron results using 2010 data over the entire kinematic range.

# $J/\psi R_{AA}$ – centrality dependence



Central collisions

suppression for both p<sub>T</sub> > 0 GeV/c and p<sub>T</sub> > 5 GeV/c

Peripheral collisions:

- larger suppression for  $p_T > 0$  GeV/c than for  $p_T > 5$  GeV/c
  - likely cold nuclear matter effects

# $/\psi R_{AA}$ comparison to LHC



- $p_T > 0$  GeV/c: more suppressed than LHC in central events regeneration
- $p_{T} > 5$  GeV/c: less suppressed than LHC in all centralities temperature effect
- **Transport models** dissociation and regeneration effects
  - $p_T > 0$  GeV/c: both models can describe centrality dependence at RHIC, but tend to overestimate suppression at LHC
  - $p_T > 5$  GeV/c: both models can qualitatively describe data

### **Upsilon measurements**

 $\Upsilon$  -cleaner probe compared to J/ $\psi$ 

- Co-mover absorption → negligible
  - Υ(1S): tightly bound, larger kinematic threshold.
    - Expect σ~ 0.2 mb, 5-10 times smaller than for J/ψ
       Lin & Ko, PLB 503 (2001) 104
- Recombination → negligible
  - at RHIC:  $\sigma_{cc} \sim 800 \ \mu b >> \sigma_{bb} \sim (1-2) \ \mu b$
- Excited states: expect sequential suppression of Υ(1S), Υ(2S), Υ (3S) states
- Challenge: low rate, rare probe
  - Need large acceptance, efficient trigger





### Y cross-section in p+p collisions



New measurements in p+p collisions at 200 and 500 GeV

- Follow world-wide data trend predicted by CEM
- Improved p+p reference for p+Au and Au+Au studies

### Y in p+Au collisions at 200 GeV



- Indication of  $\gamma$ (1S+2S+3S) suppression in p+Au collisions CNM
  - much better precision than the published R<sub>dAu</sub>
- Suggesting an additional suppression mechanism is needed beyond nPDF effects

#### Y in Au+Au collisions at 200 GeV



- Di-muon: 2014 data; di-electron: 2011 data
- Consistency between dielectron and dimuon channels
  - Combined for final results

## **Y** suppression



- Υ(1S): more suppression towards more central collisions
- Υ(2S+3S)/Υ(1S): Υ(2S+3S) more suppressed than Υ(1S) in the 0-10% central collisions - sequential melting

### **Comparison to LHC**



- Υ(1S) : similar suppression at the RHIC and at the LHC
- Υ(2S+3S): hint of less suppression at RHIC
- For both, more suppression towards central collisions

### Quarkonia summary

#### p+Au collisions

- J/ $\psi$  R<sub>pAu</sub> ~ R<sub>dAu</sub>: suggests similar CNM effects between p+Au and d+Au collisions
- J/ $\psi$  R<sub>pAu</sub> favors additional nuclear absorption effect on top of nPDF effect
- $\Upsilon R_{pAu}$ : indication of suppression  $\rightarrow$  CNM effects

#### Au+Au collisions

- $J/\psi R_{AA} < 1$  with  $p_T > 5 \text{ GeV/c} \rightarrow \text{dissociation in effect}$
- Smaller J/ $\psi$  R<sub>AA</sub> at RHIC in low-p<sub>T</sub>  $\rightarrow$  smaller regeneration contribution due to lower charm cross-section
- Larger J/ $\psi$  R<sub>AA</sub> at RHIC in high-p<sub>T</sub>  $\rightarrow$  smaller dissociation rate due to lower temperature
- Direct  $\Upsilon(1S)$  may be suppressed at RHIC  $\rightarrow$  constrain medium T
- 0-10%:  $\Upsilon(2S+3S) R_{AA} < \Upsilon(1S) R_{AA} \rightarrow$  sequential melting

#### Outlook

 Two times Au+Au data on disk for both dielectron and dimuon channels

