Double-parton scattering and Poisson statistics

Introduction

Toy model
Realistic mode

Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow)

(supported in part by Polish National Science Center grant no. 2015/19/B/ST2/00989)

QCD challenges in pp, pA and AA collisions at high energies 27 February - 3 March 2017, ETC*, Trento, Italy

Contents

II Introduction
Toy model
Realistic model
Summary and conclusions

2 Toy model

(3) Realistic model

4 Summary and conclusions

Double Parton Scattering

Double-parton scattering and Poisson statistics Rafał Staszewski

Introduction
Toy model
Realistic model
Summary and conclusions

Factorized formula

$$
\sigma_{\mathrm{DPS}}=\frac{1}{2 \sigma_{\mathrm{eff}}} \sigma_{\mathrm{SPS}}^{2}
$$

■ Well known fact: neglects correlations between partons

- Argued in this presentation: applies only to processes with small cross sections

Motivation: DPS Charm

Double-parton scattering and Poisson statistics Rafał Staszewski Introduction Tay model Realistic model Summary and conclusions

Famous result by Łuszczak, Maciuła, Szczurek: Phys. Rev. D79, 094034 (2012)

Puzzle

$\sqrt{s} \quad(\mathrm{GeV})$
$c \bar{c} c \bar{c} X$ is a subset of $c \bar{c} X \Longrightarrow \sigma_{\mathrm{SPS}} \geq \sigma_{\mathrm{DPS}}$

Solution

proper interpretation of inclusive cross section + Poisson statistics

Definitions

■ process: e.g. $p p \rightarrow c \bar{c} X$
■ subprocess: e.g. $g g \rightarrow c \bar{c}$

■ inclusive SPS: process containing at least one subprocess
■ exclusive SPS: process containing exactly one subprocess
■ inclusive DPS: process containing at least two subprocesses
■ exclusive DPS: process containing exactly two subprocesses
■ and so on (TPS, QPS, ...)

Cross sections for all processes must, by definition, be smaller than the total inelastic cross section.

Inclusive cross section

- $\sigma_{\text {inc }}$ is the cross section for the subprocess
- Processes containing several subprocesses are "counted" several times

$$
\sigma_{\mathrm{inc}}=\sigma_{\mathrm{excSPS}}+2 \sigma_{\mathrm{excDPS}}+3 \sigma_{\mathrm{exc} T P S}+4 \sigma_{\mathrm{excQPS}}+\ldots
$$

- Inclusive cross section may exceed total inelastic cross section

Contents

Double-parton
scattering and
Poisson statistics
Rafał Staszewski

Introduction
Toy model
Realistic model
Summary and conclusions

11 Introduction

2 Toy model

3 Realistic model

4 Summary and conclusions

Poisson statistics

Double-parton

$$
P(n)=e^{-\bar{n}} \frac{\bar{n}^{n}}{n!}
$$

- exclusive SPS

$$
\sigma_{\mathrm{excSPS}}=P(n=1) \cdot \sigma_{\mathrm{inel}}
$$

- exclusive DPS

$$
\sigma_{\mathrm{incDPS}}=P(n=2) \cdot \sigma_{\mathrm{inel}}
$$

■ inclusive SPS

$$
\sigma_{\mathrm{incSPS}}=P(n \geq 1) \cdot \sigma_{\mathrm{inel}}
$$

■ inclusive DPS

$$
\sigma_{\text {excDPS }}=P(n \geq 2) \cdot \sigma_{\text {inel }}
$$

Small cross section limits

Double-parton

- Example calculation for inclusive SPS

$$
\begin{gathered}
\sigma_{\mathrm{incSPS}}=P(n \geq 1) \cdot \sigma_{\text {inel }}=[1-P(0)] \cdot \sigma_{\text {inel }}=\left(1-e^{-\bar{n}}\right) \sigma_{\text {inel }} \\
\sigma_{\mathrm{incSPS}} \xrightarrow{\bar{n} \rightarrow 0} \bar{n} \sigma_{\text {inel }}=\sigma_{\mathrm{inc}}
\end{gathered}
$$

- At $\bar{n} \rightarrow 0$:

$$
\sigma_{\mathrm{incSPS}}=\sigma_{\mathrm{excSPS}}=\sigma_{\mathrm{inc}}
$$

- Example calculation for inclusive SPS

$$
\sigma_{\text {excDPS }}=P(n=2) \cdot \sigma_{\text {inel }}=\frac{1}{2} e^{-\bar{n}} \bar{n}^{2} \sigma_{\text {inel }} \xrightarrow{\bar{n} \rightarrow 0} \frac{1}{2 \sigma_{\text {inel }}} \sigma_{\text {inc }}^{2}
$$

- At $\bar{n} \rightarrow 0$:

$$
\sigma_{\mathrm{incDPS}}=\sigma_{\mathrm{excDPS}}=\frac{1}{2 \sigma_{\mathrm{eff}}} \sigma_{\mathrm{SPS}}^{2}
$$

with $\sigma_{\text {eff }}=\sigma_{\text {inel }}$.

Results

Double-parton
scattering and
Poisson statistics

Toy model

Results

Contents

Double-parton
scattering and
Poisson statistics

Rafał Staszewski

Introduction
Toy model
Realistic model
Summary and conclusions

1 Introduction

2 Toy model

3 Realistic model

4 Summary and conclusions

Impact parameter dependence

- Average number of interactions

$$
\bar{n} \rightarrow \bar{n}(b)
$$

■ Inclusive cross section

$$
\sigma_{\mathrm{inc}}=\int \bar{n}(b) d^{2} \boldsymbol{b}
$$

- Probability

$$
P(n) \rightarrow P(n ; b)=e^{-\bar{n}(b)} \frac{(\bar{n})^{n}}{n!}
$$

- Cross sections for various processes

$$
\sigma_{\mathrm{incSPS}}=\int P(n>0 ; b) d^{2} \boldsymbol{b}
$$

Similar in spirit to what is done for MPI modeling in MC event generators, e.g. T. Sjostrand and M. van Zijl, Phys. Rev. D 36, 2019 (1987).

Overlap function

Since

$$
\sigma_{\mathrm{inc}}=\int \bar{n}(b) d^{2} \boldsymbol{b} .
$$

it is possible to define the overlap function $F(b)$ such that

$$
\bar{n}(b)=\sigma_{\text {inc }} F(b)
$$

$F(b)$ is normalised to unity:

$$
\int F(b) d^{2} \boldsymbol{b}=1 .
$$

A practical (but not necessary for the model) assumption is the universality of $F(b)$.

Limit of $\sigma_{\text {inc }} \rightarrow 0$

Double-parton scattering and Poisson statistics

In the limit of $\sigma_{\text {inc }} \rightarrow 0$

$$
\begin{gathered}
\sigma_{\mathrm{inc}}=\sigma_{\mathrm{incSPS}}=\sigma_{\mathrm{excSPS}} \\
\sigma_{\mathrm{incDPS}}=\sigma_{\mathrm{exc} \mathrm{DPS}}=\frac{1}{2} \sigma_{\mathrm{inc}}^{2} \int F^{2}(b) d^{2} \boldsymbol{b}
\end{gathered}
$$

In this limit the factorised formula

$$
\sigma_{\mathrm{DPS}}=\frac{1}{2 \sigma_{\mathrm{eff}}} \sigma_{\mathrm{SPS}}^{2}
$$

is recovered with effective cross section given by $F^{2}(b)$:

$$
\frac{1}{\sigma_{\mathrm{eff}}}=\int F^{2}(b) d^{2} \boldsymbol{b}
$$

Overlap function

Double-parton

- Gaussian form

$$
F_{\text {Gaus }}(b)=\frac{2}{\sigma_{\text {eff }}} \exp \left(-\frac{2 \pi b^{2}}{\sigma_{\text {eff }}}\right)
$$

- Exponential form

$$
F_{\text {expo }}(b)=\frac{4}{\sigma_{\text {eff }}} \exp \left(-b \sqrt{\frac{8 \pi}{\sigma_{\text {eff }}}}\right)
$$

- Parameters chosen to reproduce $\sigma_{\text {eff }}$

Results

Results

Contents

Double-parton
scattering and
Poisson statistics
Rafał Staszewski

Introduction
Toy model
Reallstic model
Summary and conclusions

1 Introduction

2 Toy model

3 Realistic model

4 Summary and conclusions

Summary and conclusions

■ For processes with cross sections comparable to total cross sections proper statistical treatment is important for calculations of DPS processes
■ One needs to distinguish between inclusive and exclusive SPS, DPS, TPS, ...
■ $\sigma_{\text {inc }}=\int f_{1} f_{2} \hat{\sigma}$ should be interpreted as cross section for a given subprocess and it can exceed total inelastic cross section
■ Factorised formula for $\sigma_{\text {DPS }}$ is valid only for processes with small cross sections

- The proposed formalism relies only on a proper counting of parton-parton processes, it does not introduce any new parameters

