Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic mode

Summary and conclusions

Double-parton scattering and Poisson statistics

Rafał Staszewski

Henryk Niewodniczański Institute of Nuclear Physics Polish Academy of Sciences (IFJ PAN Cracow)

(supported in part by Polish National Science Center grant no. 2015/19/B/ST2/00989)

QCD challenges in pp, pA and AA collisions at high energies 27 February – 3 March 2017, ETC*, Trento, Italy

Contents

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic mode

Summary and conclusions

1 Introduction

2 Toy model

3 Realistic model

Double Parton Scattering

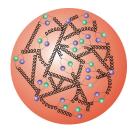
Rafał Staszewski

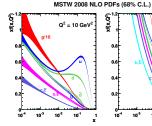
Introduction

Toy model

Realistic mode

Summary and conclusions

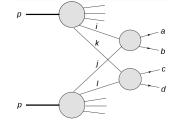




Factorized formula

$$\sigma_{\rm DPS} = \frac{1}{2\sigma_{\rm eff}} \sigma_{\rm SPS}^2$$

- Well known fact: neglects correlations between partons
- Argued in this presentation: applies only to processes with small cross sections



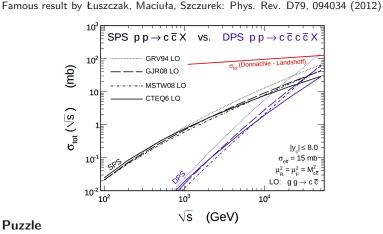
 $Q^2 = 10^4 \text{ GeV}$

10-2 10-1

Motivation: DPS Charm

Double-parton scattering and Poisson statistics

Introduction



Puzzle

 $c\bar{c}c\bar{c}X$ is a subset of $c\bar{c}X \Longrightarrow \sigma_{SPS} \ge \sigma_{DPS}$ Solution

proper interpretation of inclusive cross section + Poisson statistics

Definitions

Double-parton scattering and Poisson statistics

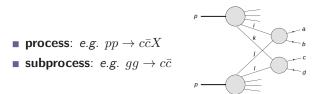
Rafał Staszewski

Introduction

Toy model

Realistic mode

Summary and conclusions



- inclusive SPS: process containing at least one subprocess
 exclusive SPS: process containing exactly one subprocess
- inclusive DPS: process containing at least two subprocesses
- exclusive DPS: process containing exactly two subprocesses
- and so on (TPS, QPS, ...)

Cross sections for all processes must, **by definition**, be smaller than the total inelastic cross section.

Inclusive cross section

Double-parton scattering and Poisson statistics

Rafał Staszewski

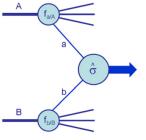
Introduction

Toy model

Realistic mod

Summary and conclusions **Inclusive** cross section:

$$\sigma_{\rm inc} = \int f(x_1, \mu^2) f(x_2, \mu^2) \hat{\sigma}(x_1, x_2, \mu^2)$$



- $\sigma_{\rm inc}$ is the cross section for the **subprocess**
- Processes containing several subprocesses are "counted" several times

$$\sigma_{\rm inc} = \sigma_{\rm excSPS} + 2\sigma_{\rm excDPS} + 3\sigma_{\rm excTPS} + 4\sigma_{\rm excQPS} + \dots$$

Inclusive cross section may exceed total inelastic cross section

Contents

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic mode

Summary and conclusions

1 Introduction

2 Toy model

3 Realistic model

Poisson statistics

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic mod

Summary and conclusions Average number of subprocesses per process:

 $\sigma_{\rm inc} = \bar{n}\sigma_{\rm inel}.$

Poisson distribution

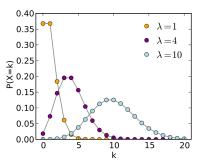
$$P\left(n\right) = e^{-\bar{n}} \frac{\bar{n}^n}{n!}$$

_ / _ _ _

 $\sigma_{\rm excSPS} = P(n=1) \cdot \sigma_{\rm inel}$

exclusive DPS

 $\sigma_{\rm incDPS} = P(n=2) \cdot \sigma_{\rm inel}$



inclusive SPS

 $\sigma_{\rm incSPS} = P(n \ge 1) \cdot \sigma_{\rm inel}$

inclusive DPS

 $\sigma_{\mathsf{excDPS}} = P(n \ge 2) \cdot \sigma_{\mathsf{inel}}$

Small cross section limits

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic mod

Summary and conclusions

$$\sigma_{\text{incSPS}} = P(n \ge 1) \cdot \sigma_{\text{inel}} = [1 - P(0)] \cdot \sigma_{\text{inel}} = (1 - e^{-\bar{n}})\sigma_{\text{inel}}$$

$$\sigma_{\rm incSPS} \xrightarrow{\bar{n} \to 0} \bar{n} \sigma_{\rm inel} = \sigma_{\rm inc}$$

 \blacksquare At $\bar{n} \rightarrow 0$:

$$\sigma_{\rm incSPS} = \sigma_{\rm excSPS} = \sigma_{\rm inc}$$

Example calculation for inclusive SPS

$$\sigma_{\text{excDPS}} = P(n=2) \cdot \sigma_{\text{inel}} = \frac{1}{2} e^{-\bar{n}} \bar{n}^2 \sigma_{\text{inel}} \xrightarrow{\bar{n} \to 0} \frac{1}{2\sigma_{\text{inel}}} \sigma_{\text{inc}}^2$$

At
$$\bar{n} \to 0$$
:
 $\sigma_{\rm incDPS} = \sigma_{\rm excDPS} = \frac{1}{2\sigma_{\rm eff}} \sigma_{\rm SPS}^2$

with $\sigma_{\text{eff}} = \sigma_{\text{inel}}$.

Double-parton scattering and Poisson statistics

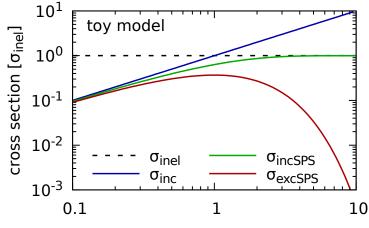
Rafał Staszewsk

Introduction

Toy model

Realistic mod

Summary and conclusions



 $\overline{n} = \sigma_{inc} / \sigma_{inel}$

Double-parton scattering and Poisson statistics

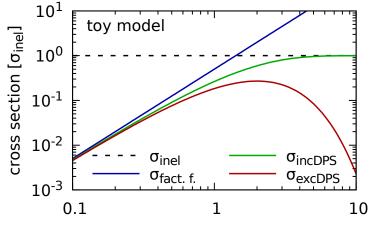
Rafał Staszewsk

Introduction

Toy model

Realistic mod

Summary and conclusions



 $\overline{n} = \sigma_{inc} / \sigma_{inel}$

Double-parton scattering and Poisson statistics

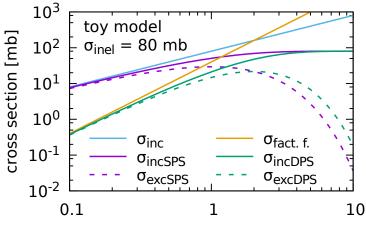
Rafał Staszewsk

Introduction

Toy model

Realistic mod

Summary and conclusions



inclusive cross section, σ_{inc} [mb]

Contents

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic model

Summary and conclusions

2 Toy model

3 Realistic model

Impact parameter dependence

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic model

Summary and conclusions Average number of interactions

$$\bar{n} \to \bar{n}(b)$$

Inclusive cross section

$$\sigma_{\rm inc} = \int \bar{n}(b) d^2 \pmb{b}.$$

Probability

$$P(n) \to P(n;b) = e^{-\bar{n}(b)} \frac{(\bar{n})^n}{n!}.$$

Cross sections for various processes

$$\sigma_{\rm incSPS} = \int P(n>0; b) \, d^2 \boldsymbol{b},$$

Similar in spirit to what is done for MPI modeling in MC event generators, *e.g.* T. Sjostrand and M. van Zijl, Phys. Rev. D **36**, 2019 (1987).

Overlap function

Since

Double-parton scattering and Poisson statistic

Rafał Staszewski

Introduction

Toy model

Realistic model

Summary and conclusions $\sigma_{\rm inc} = \int \bar{n}(b) d^2 {\pmb b}.$ it is possible to define the ${\it overlap}$ function F(b) such that

$$\bar{n}(b) = \sigma_{\rm inc} F(b)$$

F(b) is normalised to unity:

$$\int F(b)d^2\boldsymbol{b} = 1.$$

A practical (but not necessary for the model) assumption is the universality of F(b).

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic model

Summary and conclusions

In the limit of
$$\sigma_{\rm inc} \rightarrow 0$$

$$\sigma_{\rm inc} = \sigma_{\rm incSPS} = \sigma_{\rm excSPS}$$

$$\sigma_{\rm incDPS} = \sigma_{\rm excDPS} = \frac{1}{2} \sigma_{\rm inc}^2 \int F^2(b) d^2 \pmb{b}. \label{eq:sincDPS}$$

In this limit the factorised formula

$$\sigma_{\rm DPS} = \frac{1}{2\sigma_{\rm eff}} \sigma_{\rm SPS}^2$$

is recovered with effective cross section given by $F^2(b)$:

$$\frac{1}{\sigma_{\rm eff}} = \int F^2(b) d^2 \pmb{b}$$

Overlap function

- Double-parton scattering and Poisson statistics
- Rafał Staszewski
- Introduction
- Toy mode
- Realistic model
- Summary and conclusions

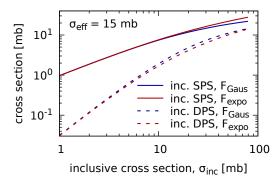
Gaussian form

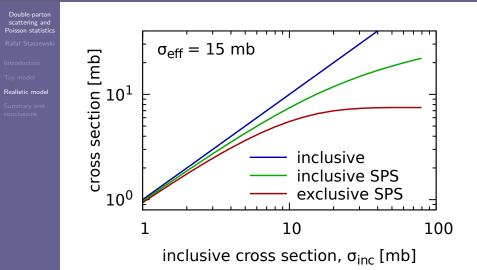
$$F_{\mathsf{Gaus}}(b) = rac{2}{\sigma_{\mathsf{eff}}} \exp\left(-rac{2\pi b^2}{\sigma_{\mathsf{eff}}}
ight)$$

Exponential form

$$F_{\text{expo}}(b) = rac{4}{\sigma_{\text{eff}}} \exp\left(-b\sqrt{rac{8\pi}{\sigma_{\text{eff}}}}
ight)$$

Parameters chosen to reproduce $\sigma_{\rm eff}$





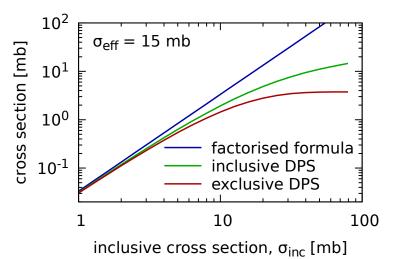
Double-parton scattering and Poisson statistics

Rafał Staszewsk

Introduction

Toy model

Realistic model



Contents

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic mode

Summary and conclusions

2 Toy model

3 Realistic model

Summary and conclusions

Double-parton scattering and Poisson statistics

Rafał Staszewski

Introduction

Toy model

Realistic model

- For processes with cross sections comparable to total cross sections proper statistical treatment is important for calculations of DPS processes
- One needs to distinguish between inclusive and exclusive SPS, DPS, TPS, ...
- $\sigma_{\rm inc} = \int f_1 f_2 \hat{\sigma}$ should be interpreted as cross section for a given subprocess and it can exceed total inelastic cross section
- \blacksquare Factorised formula for $\sigma_{\rm DPS}$ is valid only for processes with small cross sections
- The proposed formalism relies only on a proper counting of parton-parton processes, it does not introduce any new parameters