QCD chalenges, Trento February/March 2017

Inclusive double J/ψ production at the LHC

Antoni Szczurek ^{1,2} Anna Cisek ² Wolfgang Schäfer ¹

¹Institute of Nuclear Physics PAN Kraków ²University of Rzeszów

Introduction

- ▶ J/ψ the lightest quarkonium. Relatively large cross section.
- ▶ J/ψ a good probe of quark-gluon plasma.
- Long-standing problems in microscopic description of J/ψ distributions.
 - Calculated cross sections much smaller than experimental ones.
- Color octet model was a "solution" But it was (is) rather fitted to the data.
- ► Higher-order collinear or *k_t*-factorization non-relativistic pQCD lead to larger cross sections.
- There is less and less room for color octet contributions.
- Do we need at all color-octet contributions? Not clear in my opinion.

Mechanisms included for $J/\psi J/\psi$

- 1. Leading order box contribution in k_t -factorization approach.
- 2. Double parton scattering mechanism (data driven).
- 3. Two-gluon exchange (collinear factorization).
- 4. Production of $\chi_c(J_1)\chi_c(J_2)$ and feed-down.

Our previous works on ${\it J}/\psi$

Our previous works on J/ψ :

A. Cisek, W. Schäfer and A. Szczurek, "Exclusive photoproduction of charmonia in $\gamma p \to Vp$ and $pp \to pVp$ reactions within k_t -factorization approach",

JHEP **1504** (2015) 159. Phys. Rev. **D93** (2016) 074014.

A. Cisek, W. Schäfer and A. S., "Semiexclusive production of J/ψ mesons in proton-proton collisions", arXiv:1611.08210, in Phys.Lett.B.

A. Cisek and A. S., a paper in preparation

A. Cisek, W. Schäfer and A.S., a paper in preparation

S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schäfer, "Interparticle correlations in the production of J/ψ pairs in

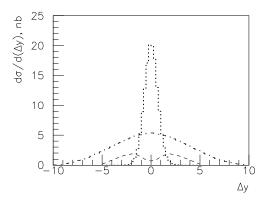
proton-proton collisions", Phys. Rev. **D87** (2013) 034035.

$$pp \rightarrow J/\psi J/\psi$$

New data become available recently:

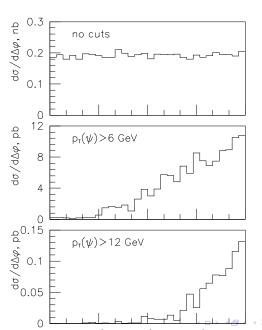
- ▶ Tevatron D0 data for \sqrt{s} = 1.96 TeV (small σ_{eff} obtained)
- ▶ LHCb data (\sqrt{s} = 7 TeV)
- ► CMS data for \sqrt{s} = 8 TeV (running cuts, difficult to interprete)
- ▶ preliminary ATLAS data for \sqrt{s} = 8 TeV (will be discussed here)

$pp \rightarrow J/\psi J/\psi$, LHCb

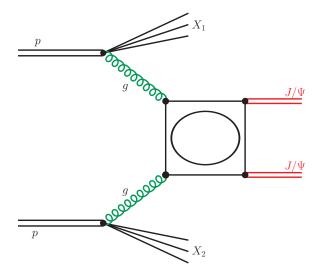


S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schäfer, "Interparticle correlations in the production of J/ψ pairs in proton-proton collisions", Phys. Rev. **D87** (2013) 034035.

$pp \rightarrow J/\psi J/\psi$, LHCb



$pp \rightarrow J/\psi J/\psi$, box

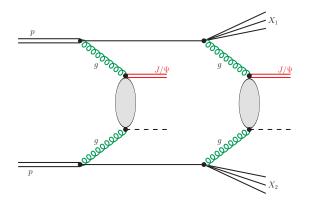


$pp \rightarrow J/\psi J/\psi$, box



only some are shown

$pp \rightarrow J/\psi J/\psi$, double parton scattering



DPS $(O(\alpha_s^6))$ But enhanced by higher powers of gluon distributions $g_1^2g_2^2$ at high energy.

$pp \rightarrow J/\psi J/\psi$, box contributions

In k_t -factorization approach:

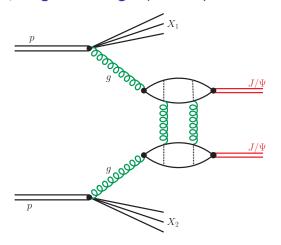
$$\frac{d\sigma(pp \to J/\psi J/\psi X)}{dy_{V_{1}}dy_{V_{2}}d^{2}p_{V_{1},t}d^{2}p_{V_{2},t}} = \frac{1}{16\pi^{2}\hat{s}^{2}} \int \frac{d^{2}q_{1t}}{\pi} \frac{d^{2}q_{2t}}{\pi} \overline{|\mathcal{M}_{g^{*}g^{*} \to J/\psi J/\psi}^{off-shell}|^{2}} \times \delta^{2} \left(\vec{q}_{1t} + \vec{q}_{2t} - \vec{p}_{V_{1},t} - \vec{p}_{V_{2},t}\right) \mathcal{F}_{g}(x_{1}, q_{1t}^{2}, \mu_{F}^{2}) \mathcal{F}_{g}(x_{2}, q_{2t}^{2}, \mu_{F}^{2}) . \tag{1}$$

The corresponding matrix elements squared for the $gg \to J/\psi J/\psi$ (box) is

$$|\mathcal{M}_{gg\to J/\psi J/\psi}|^2 \propto \alpha_s^4 |R(0)|^4 . \tag{2}$$

They were calculated e.g. by our collaborator S. Baranov.

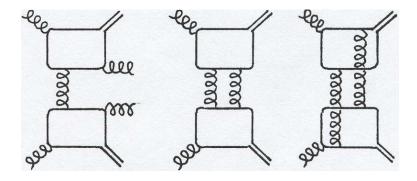
$pp \rightarrow J/\psi J/\psi$, 2g exchange (NNLO)



16 diagrams, box ($O(\alpha_s^6)$) (high-order) from $\gamma\gamma \to J/\psi J/\psi$ to $gg \to J/\psi J/\psi$ first included in: S.P. Baranov, A.M. Snigirev, N.P. Zotov, A. Szczurek and W. Schäfer,

"Interparticle correlations in the production of J/ψ pairs in proton proton collisions" Phys. Rev. **D87** (2013) 034035

$pp \rightarrow J/\psi J/\psi$, 2g exchange (NNLO)



and many more ...

$pp \rightarrow J/\psi J/\psi$, box contributions

We have made calculations both in collinear and k_t -factorization approaches. In collinear approach:

$$\frac{d\sigma(pp \to J/\psi J/\psi}{dy_{V_1}dy_{V_2}d^2p_t} = \frac{1}{16\pi^2\hat{s}^2} \overline{|\mathcal{M}_{gg\to J/\psi J/\psi}^{on-shell}|^2} \times g(x_1, \mu_F^2)g(x_2, \mu_F^2).$$
(3)

In our calculations we will use MSTW08 gluon distributions.

2g exchange mechanism

In high-energy approximation the elementary 2g-exchange process amplitude

$$\mathcal{M} \propto \hat{s} \int d^2 \kappa \frac{\Phi_1^{nr}(\kappa_1) \Phi_2^{nr}(\kappa_2)}{(\kappa_1^2 + m_g^2)(\kappa_2^2 + m_g^2)}. \tag{4}$$

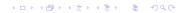
where nonrelativistic $g \rightarrow J/\psi$ impact factors:

$$\Phi_k^{nr} \propto \sqrt{\Gamma_{V \to e^+e^-}} \alpha_s$$
 (k=1,2).

We take $m_g=0$ (possible enhancement, but not in this corner of PS) $\Phi^{nr}_{\gamma\to V}$ were calculated by Ginzburg,Panfil,Serbo 1987.

It was generalized to $g \rightarrow J/\psi$ transitions.

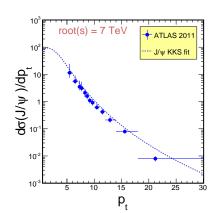
 $O(\alpha_s^6)$ contribution !!! (so far calculations upto $O(\alpha_s^5)$ in NLO) (Lansberg, Shao 2015)



experiment driven DPS

$$\frac{d\sigma(pp\to J/\psi g)}{dy_{J/\psi}dy_gd^2p_t} = \frac{1}{16\pi^2\hat{s}^2} \overline{|\mathcal{M}_{gg\to J/\psi g}^{eff}|^2} \times g(x_1,\mu_F^2)g(x_2,\mu_F^2). \quad (5)$$

Auxiliary final state "gluon" (could be massive). We take parametrization by Kom-Kulesza-Stirling 2011 with MSTW08 PDF.



Experiment driven DPS

single parton scattering \rightarrow double parton scattering We assume factorized Ansatz.

$$\frac{d\sigma}{dy_1 d^2 p_{1t} dy_2 d^2 p_{2t}} = \frac{1}{2\sigma_{\text{eff}}} \cdot \frac{d\sigma}{dy_1 d^2 p_{1t}} \cdot \frac{d\sigma}{dy_2 d^2 p_{2t}}$$
(6)

single J/ψ distributions were parametrized.

 σ_{eff} in principle a free parameter responsible for the overlap of partonic densities of colliding protons.

 σ_{eff} = 15 mb is world average for different reactions. Much smaller value was obtained for double quarkonia production???

$pp \rightarrow \chi_c \chi_c$

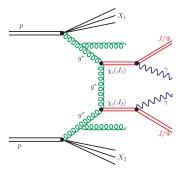


Figure: A diagrammatic representation of the leading order mechanisms for $pp \to \chi_c(J_1)\chi_c(J_2) \to (J/\psi + \gamma)(J/\psi + \gamma)$ reaction.

$g^*g^* \rightarrow \chi_c$ vertex

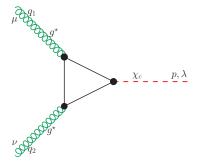


Figure: A diagrammatic representation of the $g^*g^* \to \chi_c(\lambda)$ vertex being a building block of corresponding $g^*g^* \to \chi_c(J_1)\chi_c(J_2)$.

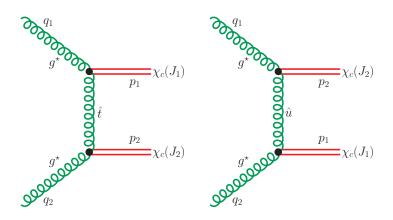


Figure: A diagrammatic representation of the generic $g^*g^* \to \chi_c(J_1)\chi_c(J_2)$ t-channel (left) and u-channel (right) amplitudes.

Now we wish to discuss the elementary $g^*g^* \to \chi_c(J_1)\chi_c(J_2)$ amplitudes.

For example the amplitude for the $gg \to \chi_c(0)\chi_c(0)$ subprocess can be written as:

$$\mathcal{M}^{00} = \epsilon_1^{\alpha} \epsilon_2^{\beta} \left(\frac{g^{\mu\nu}}{\hat{t}} V_{\alpha\mu}^{\chi_c(0),t}(...) V_{\beta\nu}^{\chi_c(0),t}(...) + \frac{g^{\mu\nu}}{\hat{u}} V_{\alpha\mu}^{\chi_c(0),u}(...) V_{\beta\nu}^{\chi_c(0),u}(...) \right)$$
(7)

The amplitude for the $gg \to \chi_c(1)\chi_c(1)$ subprocess in a tensorial form can be written as:

$$\mathcal{M}_{\gamma\delta}^{11} = \epsilon_{1}^{\alpha} \epsilon_{2}^{\beta} \left(\frac{g^{\mu\nu}}{\hat{t}} V_{\alpha\mu,\gamma}^{\chi_{c}(1),t}(...) V_{\beta\nu,\beta}^{\chi_{c}(1),t}(...) + \frac{g^{\mu\nu}}{\hat{u}} V_{\alpha\mu,\gamma}^{\chi_{c}(1),u}(...) V_{\beta\nu,\beta}^{\chi_{c}(1),u}(...) \right)$$
(8)

Then the helicity amplitude can be obtained from the tensorial representation as:

$$\mathcal{M}^{11}(\lambda_1, \lambda_2) = \epsilon_{\chi_c(1), 1}^*(p_1, \lambda_1) \epsilon_{\chi_c(1), 2}^*(p_2, \lambda_2) \mathcal{M}_{\gamma \delta}^{11}.$$
 (9)

The k_t -factorization amplitude can be written conveniently using the so-called nonsense polarization vectors for off-shell gluons and carteasian polarization vectors for final χ_c mesons. The corresponding formula reads

$$M_{g^*g^* \to \chi_c(1)\chi_c(1)}^{i,j} = e_{1\alpha}e_{2\beta}T^{\alpha\beta,\mu\nu}\epsilon_{3\mu}^i\epsilon_{4\nu}^i$$
, (10)

or more precisely

$$M_{g^*g^* \to \chi_c(1)\chi_c(1)}^{i,j} = e_{1\alpha}e_{2\beta}T_t^{\alpha\beta,\mu\nu}\epsilon_{3\mu}^i\epsilon_{4\nu}^j + e_{1\alpha}e_{2\beta}T_u^{\alpha\beta,\mu\nu}\epsilon_{3\nu}^i\epsilon_{4\mu}^j, \quad (11)$$

where *i* and *j* are the carteasian polarizations of $\chi_c(1)$ mesons and T is a tensorial representation of the amplitude.

Because of properties of our $g^*g^* \to \chi_c(1)$ vertices the tensorial amplitudes for the $g^*g^* \to \chi_c(1)\chi_c(1)$ fulfill the following relations:

$$q_{1}^{\alpha}\mathcal{M}_{\alpha\beta\gamma\delta} = 0,$$

$$q_{2}^{\beta}\mathcal{M}_{\alpha\beta\gamma\delta} = 0,$$

$$p_{1}^{\gamma}\mathcal{M}_{\alpha\beta\gamma\delta} = 0,$$

$$p_{2}^{\delta}\mathcal{M}_{\alpha\beta\gamma\delta} = 0.$$
(12)

Finally we wish to discuss also production of tensor χ_c mesons. The $g^*g^* \to \chi_c(2)$ vertex, being a building block of corresponding amplitudes for two χ_c meson production, can be written as:

$$V_{\mu\nu}(2, J_z; q_1, q_2) = \dots R_P'(0) \, \delta^{ab} \, T_{\mu\nu}(2, J_z; q_1, q_2)$$
 (13)

where

$$T_{\mu\nu}(2,J_z;q_1,q_2) = rac{-16M^2}{(2q_1\cdot q_2)^2}(-g_{\mu\nu}(q_2-q_1)^{lpha}(q_2-q_1)^{eta}\epsilon_{lphaeta}(J_z) + 4(q_1\cdot q_2-q_1)^{lpha}\epsilon_{lpha
u}(J_z)q_{2,\mu} - 2(q_2-q_1)^{lpha}\epsilon_{lpha
u}(J_z)q_{2,\mu}$$

(14)

 J_z above is a projection of the spin 2 to a chosen axis. The spherical polarization tensors for tensor $\chi_c(2)$ mesons, that appear above, fulfill the following orthogonality relation:

$$\epsilon_{\mu\nu}^*(\lambda_1)\epsilon^{\mu\nu}(\lambda_2) = \delta_{\lambda_1\lambda_2}$$
 (15)

The above vertex functions are used then to calculate for instance amplitude for the partonic $g^*g^* \to \chi_c(2)\chi_c(2)$ subprocess. The tensorial representation of the amplitude can be then written as

$$\begin{array}{lcl} A_{\mu_{1}\mu_{2}}(q_{1}q_{2},p_{3},p_{4};\lambda_{3}\lambda_{4}) & = & V_{\mu_{1}\nu_{1}}^{t,1}(p_{3},\lambda_{3})\left(\frac{-g_{\nu_{1}\nu_{2}}}{\hat{t}}\right)V_{\nu_{2}\mu_{2}}^{t,2}(p_{4},\lambda_{4}) \\ & + & V_{\mu_{1}\nu_{1}}^{u,1}(p_{4},\lambda_{4})\left(\frac{-g_{\nu_{1}\nu_{2}}}{\hat{u}}\right)V_{\nu_{2}\mu_{2}}^{u,2}(p_{3},\lambda_{6}) \end{array}$$

Cross section

From the general rules of nonrelativistic pQCD:

$$\sigma_{pp \to \chi_c \chi_c} \propto \alpha_s^4 |R_P'(0)|^4$$
 (17)

The cross section sensitive to the choice of renormalization scale and the wave function.

Combined branching fractions

Table: Combined decay branching fractions for different combinations of intermediate $\chi_c(J_1)\chi_c(J_2)$ dimeson states.

	$\chi_c(0)$	$\chi_c(1)$	$\chi_c(2)$
$\chi_c(0)$	$1.44 \ 10^{-4}$	0.0035	0.002
$\chi_c(1)$	0.0035	0.12	0.07
$\chi_c(2)$	0.002	0.07	0.035

$pp \rightarrow \chi_c \chi_c$, prelimianary results

Table: Cross sections in pb for production of different $\chi_c(J_1)\chi_c(J_2)$ dimeson states for the ATLAS fiducial volume: -2.1 < y_1, y_2 < 2.1 and p_t > 8.5 GeV. The numbers are obtained in the k_t -factorization approach. the second number (in parantheses) is obtained in the collinear-factorization approach. In all cases the gauge invariant matrix elements discussed in the present paper were used.

ATLAS	$\chi_c(0)$	$\chi_c(1)$	$\chi_c(2)$
$\chi_c(0)$	0.68	2.4	not yet
$\chi_c(1)$	2.4	19.6	not yet
$\chi_c(2)$	not yet	not yet	1.2

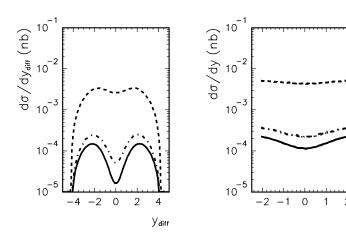
$pp \rightarrow \chi_c \chi_c$ cross section

The k_t -factorization approach the corresponding differential cross section can be written as:

$$\frac{d\sigma(pp \to \chi_c \chi_c X)}{dy_{M_1} dy_{M_2} d^2 p_{M_1,t} d^2 p_{M_2,t}} = \frac{1}{16\pi^2 \hat{s}^2} \int \frac{d^2 q_{1t}}{\pi} \frac{d^2 q_{2t}}{\pi} \overline{|\mathcal{M}_{g^*g^* \to \chi_c \chi_c}^{off-shell}|^2} \times \delta^2 \left(\vec{q}_{1t} + \vec{q}_{2t} - \vec{p}_{V_1,t} - \vec{p}_{V_2,t} \right) \mathcal{F}_g(\mathbf{x}_1, \mathbf{q}_{1t}^2, \mu_F^2) \mathcal{F}_g(\mathbf{x}_2, \mathbf{q}_{2t}^2, \mu_F^2) . (18)$$

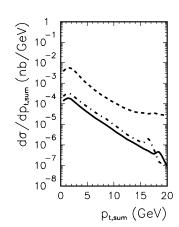
The x_1 and x_2 are calculated from χ_c 's transverse masses and rapidities in the standard way.

$pp \rightarrow \chi_c \chi_c$, prelimianary results

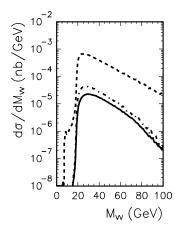


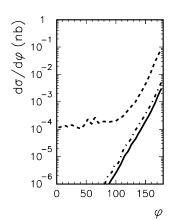
$pp \rightarrow \chi_c \chi_c$, preliminary results



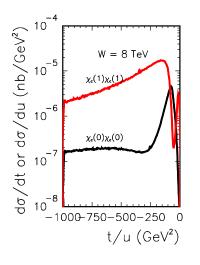


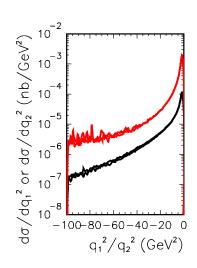
$pp \rightarrow \chi_c \chi_c$, preliminary results





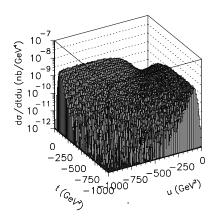
t, u distributions

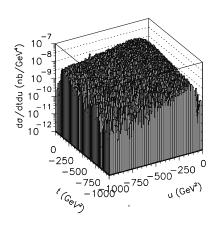




 $|\hat{t}| \ll |q_1^2|, |q_2^2|$ or $|\hat{u}| \ll |q_2^2|, |q_2^2|$ Enhancement of very large $|\hat{t}|$ and $|\hat{u}|$ for $\chi_c(1)\chi_c(1)$

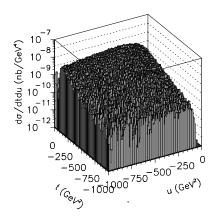
t x u distributions

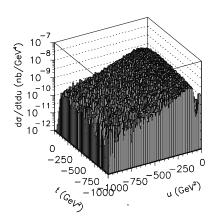




Interference effect for $\chi_c(1)\chi_c(1)$?

t x u distributions





t diagram and u diagram separately Not really interference (about 30%)

$pp \rightarrow \chi_c(1)\chi_c(1)$, dominance

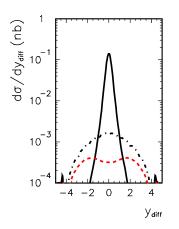
The dominance of the $\chi_c(1)\chi_c(1)$ requires extra discussion. In contrast to the $g^*g^* \to \chi_c(1)$ amplitude, the amplitude for $g^*g^* \to \chi_c(1)\chi_c(1)$ does not vanish when $q_1^2 \to 0$ and $q_2^2 \to 0$. This can be understood by the fact that then neither \hat{t} nor \hat{u} (see diagram) have to vanish.

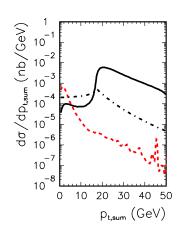
This means that we are alway far from

$$(q_1^2 = 0, \hat{t} = 0), (q_1^2 = 0, \hat{u} = 0), (q_2^2 = 0, \hat{u} = 0), (q_2^2 = 0, \hat{u} = 0)$$
 points, i.e. the Landau-Yang theorem is not active.

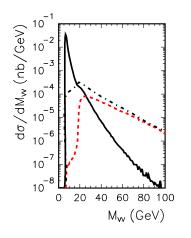
Even if we are close to one of such points and the *t* or *u* amplitudes are small, it does not happen simulataneously.

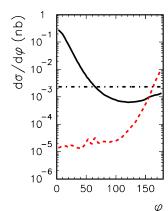
Comparison of different mechanisms



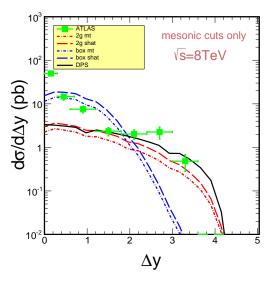


Comparison of different mechanisms



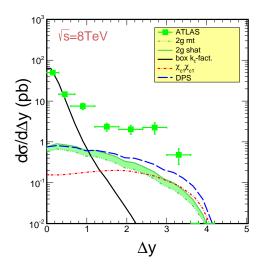


First results, mesonic cuts only



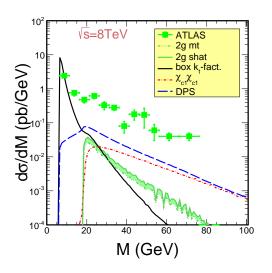
data include cuts on muons, this calculation not!

First results, with muon cuts



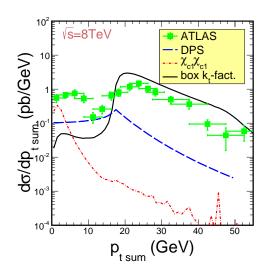
simultaneous decay of both J/ψ in Monte Carlo approach -2.1 > $y_1, y_2 >$ 2.1, $p_t >$ 8.5 GeV ATLAS-CONF-2016-047

First results, with muon cuts



 $p_{t,\mu} >$ 2.5 GeV ATLAS-CONF-2016-047

First results, with muon cuts



Conclusions, double J/ψ production

- We have tried several mechanisms of double quarkonium production.
- ▶ Leading-order contribution in k_t -factorization.
- ► two-gluon exchange in collinear approach. go to k_t-factorization (enhancement?).
- ▶ Double parton scattering calculated based on experimental data for single J/ψ production.
- $\chi_c(J_1)\chi_c(J_2)$ were calculated. Dominance of $\chi_c(1)\chi_c(1)$ for the ATLAS cuts.
- ▶ Clear signature of double parton scattering mechanism.
- $\sigma_{\it eff} \sim 5$ mb found from experimental analyses may be too small due to missing contributions (included in our calculation). The two-gluon exchange and double χ_c mechanisms have some characteristics similar as DPS.
- There seems to be still some room for other mechanisms. We have a list of processes to be included. More work (test) clearly required.

Conclusions, double J/ψ production

- We have tried several mechanisms of double quarkonium production.
- ▶ Leading-order contribution in k_t -factorization.
- ► two-gluon exchange in collinear approach. go to k_t-factorization (enhancement?).
- ▶ Double parton scattering calculated based on experimental data for single J/ψ production.
- $\chi_c(J_1)\chi_c(J_2)$ were calculated. Dominance of $\chi_c(1)\chi_c(1)$ for the ATLAS cuts.
- Clear signature of double parton scattering mechanism.
- $\sigma_{\it eff} \sim 5$ mb found from experimental analyses may be too small due to missing contributions (included in our calculation). The two-gluon exchange and double χ_c mechanisms have some characteristics similar as DPS.
- There seems to be still some room for other mechanisms. We have a list of processes to be included. More work (test) clearly required.

