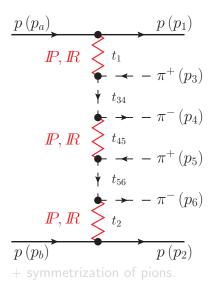
Triple Regge exchange mechanisms of four-pion continuum production in the $pp \rightarrow pp\pi^+\pi^-\pi^+\pi^$ reaction (arXiv:1702.07572 [hep-ph]) @ QCD challenges in pp, pA and AA collisions at high energies

Radosław A. Kycia¹ kycia.radoslaw@gmail.com Piotr Lebiedowicz² Piotr.Lebiedowicz@ifj.edu.pl Antoni Szczurek² Antoni.Szczurek@ifj.edu.pl Jacek Turnau

¹The Faculty of Physics, Mathematics and Computer Science T. Kościuszko Cracow University of Technology ²Institute of Nuclear Physics Polish Academy of Sciences, PL-31342 Kraków, Poland

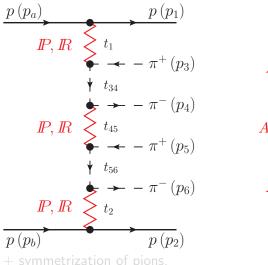
March 2, 2017


3 Experimental characteristics

Other characteristics - ATLAS

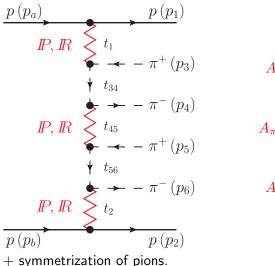
5 Bibliography

The model $pp \rightarrow pp\pi^+\pi^-\pi^+\pi^-$


The model

 $\mathcal{M}_{\{3456\}} = \\ A_{\pi p}(s_{13}, t_1) \\ \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} \\ A_{\pi \pi}(s_{45}, t_{45}) \\ \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} \\ A_{\pi p}(s_{26}, t_2)$

▲□▶ ▲圖▶ ★ 国▶ ★ 国▶ - 国 - のへで


The model

 $\begin{array}{rl} \mathcal{M}_{\{3456\}} &= \\ A_{\pi p}(s_{13},t_1) \\ \hline F_{\pi}(t_{34}) \\ \hline t_{34} - m_{\pi}^2 \\ A_{\pi \pi}(s_{45},t_{45}) \\ \hline F_{\pi}(t_{56}) \\ \hline t_{56} - m_{\pi}^2 \\ A_{\pi p}(s_{26},t_2) \end{array}$

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

The model

 $\mathcal{M}_{\{3456\}} = \\ A_{\pi p}(s_{13}, t_1) \\ \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} \\ A_{\pi \pi}(s_{45}, t_{45}) \\ \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} \\ A_{\pi p}(s_{26}, t_2) \end{cases}$

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

The model - details

$$\begin{split} \mathcal{M} &= \frac{1}{2} \left(\mathcal{M}_{\{3456\}} + \mathcal{M}_{\{5436\}} + \mathcal{M}_{\{3654\}} + \mathcal{M}_{\{5634\}} \right) \\ &+ \frac{1}{2} \left(\mathcal{M}_{\{4356\}} + \mathcal{M}_{\{4536\}} + \mathcal{M}_{\{6354\}} + \mathcal{M}_{\{6534\}} \right) \\ &+ \frac{1}{2} \left(\mathcal{M}_{\{3465\}} + \mathcal{M}_{\{5463\}} + \mathcal{M}_{\{3645\}} + \mathcal{M}_{\{5643\}} \right) \\ &+ \frac{1}{2} \left(\mathcal{M}_{\{4365\}} + \mathcal{M}_{\{4563\}} + \mathcal{M}_{\{6345\}} + \mathcal{M}_{\{6543\}} \right) . \end{split}$$
(1)

The model - details

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

For such a complicated model many choices have to be made, e.g.,:

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [1], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_{\pi}(t_{ij})$? A: We selected common choice $F_{\pi}(t) = \exp\left(\frac{t-m_{\pi}^2}{\Lambda_{off,E}^2}\right)$, where

 $\Lambda_{off,E} = 1 - 1.5 GeV^{-2}$ (educated guess for fit functions and upper and lower limits for $\Lambda_{off,E}$).

• Q: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

For such a complicated model many choices have to be made, e.g.,:

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [1], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_{\pi}(t_{ij})$? A: We selected common choice $F_{\pi}(t) = \exp\left(\frac{t-m_{\pi}^2}{\Lambda_{off,E}^2}\right)$, where

 $\Lambda_{off,E} = 1 - 1.5 GeV^{-2}$ (educated guess for fit functions and upper and lower limits for $\Lambda_{off,E}$).

• Q: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(s_{13}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(s_{45}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(s_{26}, t_2).$$

For such a complicated model many choices have to be made, e.g.,:

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [1], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_{\pi}(t_{ij})$? A: We selected common choice $F_{\pi}(t) = \exp\left(\frac{t-m_{\pi}^2}{\Lambda_{off,E}^2}\right)$, where

 $\Lambda_{off,E} = 1 - 1.5 GeV^{-2}$ (educated guess for fit functions and upper and lower limits for $\Lambda_{off,E}$).

Q: How remove regions where the Regge theory does not apply (s_{ij} < 2GeV²)? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

$$\mathcal{M}_{\{3456\}} = A_{\pi p}(\boldsymbol{s_{13}}, t_1) \frac{F_{\pi}(t_{34})}{t_{34} - m_{\pi}^2} A_{\pi \pi}(\boldsymbol{s_{45}}, t_{45}) \frac{F_{\pi}(t_{56})}{t_{56} - m_{\pi}^2} A_{\pi p}(\boldsymbol{s_{26}}, t_2).$$

For such a complicated model many choices have to be made, e.g.,:

- **Q**: What is exact form of $A_{p\pi}$ and $A_{\pi\pi}$ amplitudes? **A**: Take parametrization by Lebiedowicz and Sczurek [1], however, different choices are possible (...more fundamentally, how QCD and the Regge phenomenology are connected?).
- Q: What is the choice of form factor $F_{\pi}(t_{ij})$? A: We selected common choice $F_{\pi}(t) = \exp\left(\frac{t-m_{\pi}^2}{\Lambda_{off,E}^2}\right)$, where

 $\Lambda_{off,E} = 1 - 1.5 GeV^{-2}$ (educated guess for fit functions and upper and lower limits for $\Lambda_{off,E}$).

• Q: How remove regions where the Regge theory does not apply $(s_{ij} < 2GeV^2)$? A: We can take smooth cut function or the Heaviside theta function (does anyone know how to include non-Regge region?).

Cross section

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

• ATLAS:

 $|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_\pi| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV}, \quad (3)$

• ALICE:

 $p_{t,p} < 2 \text{ GeV}, \quad p_{t,\pi} > 0.017 \text{ GeV}, \quad |\eta_{\pi}| < 0.9,$ (4)

...and technical cut $M_{4\pi} < 30$ GeV.

Results were obtained using 'augmented' GenEx Monte Carlo generator [3].

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

• ATLAS:

 $|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_\pi| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV},$ (3) • ALICE:

 $p_{t,p} < 2 \text{ GeV}, \quad p_{t,\pi} > 0.017 \text{ GeV}, \quad |\eta_{\pi}| < 0.9,$ (4)

...and technical cut $M_{4\pi} < 30$ GeV. Results were obtained using 'augmented' GenEx Monte Carlo generator [3].

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

• ATLAS:

 $|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_{\pi}| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV},$ (3)

• ALICE:

 $p_{t,p} < 2 \text{ GeV}, \quad p_{t,\pi} > 0.017 \text{ GeV}, \quad |\eta_{\pi}| < 0.9,$ (4)

...and technical cut $M_{4\pi} < 30~{\rm GeV}$. Results were obtained using 'augmented' GenEx Monte Carlo generator [3].

• Full Phase Space:

$$p_{t,p} < 2 \text{ GeV}, \quad |y_{4\pi}| < 6,$$
 (2)

• ATLAS:

 $|t_1|, |t_2| < 1 \text{ GeV}^2, \quad |y_{\pi}| < 2.5, \quad p_{t,\pi} > 0.5 \text{ GeV},$ (3)

• ALICE:

 $p_{t,p} < 2 \text{ GeV}, \quad p_{t,\pi} > 0.017 \text{ GeV}, \quad |\eta_{\pi}| < 0.9,$ (4)

...and technical cut $M_{4\pi} < 30$ GeV. Results were obtained using 'augmented' GenEx Monte Carlo generator [3]. Table : The integrated Born level (no absorption effects) cross section for the four-pion continuum production. Results were calculated for two different values of the cut-off parameter $\Lambda_{off,E}$.

	$\Lambda_{off,E}$ [GeV]	$\sigma @ \sqrt{s} = 7 \text{ TeV}$	$\sigma @ \sqrt{s} = 13 \text{ TeV}$
Full PS	1.0	7.21 <i>µ</i> b	8.97 <i>µ</i> b
Full PS	1.5	42.86 µb	51.78 <i>µ</i> b
ATLAS	1.0	6.91 nb	7.48 nb
ATLAS	1.5	141.43 nb	154.19 nb
ALICE	1.0	6.8 pb	7.5 pb
ALICE	1.5	50.7 pb	56.4 pb

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

ALICE cuts practically reject detection possibility.

Table : The integrated Born level (no absorption effects) cross section for the four-pion continuum production. Results were calculated for two different values of the cut-off parameter $\Lambda_{off,E}$.

	$\Lambda_{off,E}$ [GeV]	$\sigma @ \sqrt{s} = 7 \text{ TeV}$	$\sigma @ \sqrt{s} = 13 \text{ TeV}$
Full PS	1.0	7.21 <i>µ</i> b	8.97 <i>µ</i> b
Full PS	1.5	42.86 µb	51.78 <i>µ</i> b
ATLAS	1.0	6.91 nb	7.48 nb
ATLAS	1.5	141.43 nb	154.19 nb
ALICE	1.0	6.8 pb	7.5 pb
ALICE	1.5	50.7 pb	56.4 pb

ALICE cuts practically reject detection possibility.

Experimental characteristics

Experimental characteristics - rapidity gap

Focus on the pion subsystem and do:

- Order pion system according to rapidity: $y_1 < y_2 < y_3 < y_4$.
- The following classes of ordering are possible:
 Class A:

 $\pi^+(y_1), \pi^-(y_2), \pi^+(y_3), \pi^-(y_4),$ $\pi^-(y_1), \pi^+(y_2), \pi^-(y_3), \pi^+(y_4);$

• Class B:

 $\pi^{-}(y_1), \pi^{+}(y_2), \pi^{+}(y_3), \pi^{-}(y_4), \\ \pi^{+}(y_1), \pi^{-}(y_2), \pi^{-}(y_3), \pi^{+}(y_4);$

• Class C:

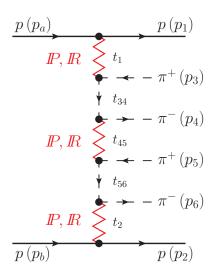
 $\pi^+(y_1), \pi^+(y_2), \pi^-(y_3), \pi^-(y_4),$ $\pi^-(y_1), \pi^-(y_2), \pi^+(y_3), \pi^+(y_4).$

Focus on the pion subsystem and do:

- Order pion system according to rapidity: $y_1 < y_2 < y_3 < y_4$.
- The following classes of ordering are possible:
 - Class A:

$$\pi^+(y_1), \pi^-(y_2), \pi^+(y_3), \pi^-(y_4), \pi^-(y_1), \pi^+(y_2), \pi^-(y_3), \pi^+(y_4);$$

• Class B:

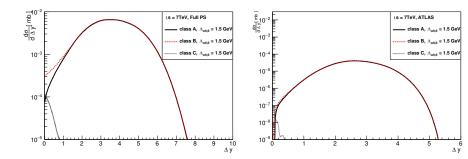

$$\pi^{-}(y_1), \pi^{+}(y_2), \pi^{+}(y_3), \pi^{-}(y_4), \\ \pi^{+}(y_1), \pi^{-}(y_2), \pi^{-}(y_3), \pi^{+}(y_4);$$

• Class C:

$$\pi^+(y_1), \pi^+(y_2), \pi^-(y_3), \pi^-(y_4), \pi^-(y_1), \pi^-(y_2), \pi^+(y_3), \pi^+(y_4).$$

・ロト ・西ト ・ヨト ・ヨー うらぐ

Experimental characteristics - rapidity gap


• Class A:

- $\pi^+(y_1), \pi^-(y_2), \pi^+(y_3), \pi^-(y_4),$ $\pi^-(y_1), \pi^+(y_2), \pi^-(y_3), \pi^+(y_4);$ • Class B:
 - $\pi^{-}(y_1), \pi^{+}(y_2), \pi^{+}(y_3), \pi^{-}(y_4),$ $\pi^{+}(y_1), \pi^{-}(y_2), \pi^{-}(y_3), \pi^{+}(y_4);$
- Class C:
 - $\pi^+(y_1), \pi^+(y_2), \pi^-(y_3), \pi^-(y_4),$
 - $\pi^{-}(y_1), \pi^{-}(y_2), \pi^{+}(y_3), \pi^{+}(y_4);$

+ symmetrization

Experimental characteristics - rapidity gap

Differences between these classes is visible in $\Delta y := y_3 - y_2$.

- イロト イヨト イヨト イヨト ニヨー のへで

Experimental characteristic - comparison with 2σ

Comparison with $pp \rightarrow pp\sigma\sigma$ process recently discussed in [2] which gives (via $\sigma \rightarrow \pi^+\pi^-$) the same final state.

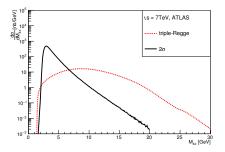


Figure : Four-pion invariant mass distribution $(M_{4\pi})$ with the ATLAS kinematical cuts (3) for $\sqrt{s} = 7$ TeV. The results correspond to the Born level calculations. The dotted line represents the triple Regge exchange mechanism obtained for $\Lambda_{off,E} = 1.5$ GeV. The solid line represents the contribution from $\sigma\sigma$ mechanism discussed in [2].

Other characteristics - ATLAS

Other characteristics - p_t

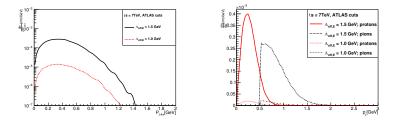


Figure : Distribution in transverse momentum of the four-pion system (P_t) (left panel) and for the transverse momenta of individual particles (protons or pions) (right panel) with the ATLAS cuts (3).

▲ロト ▲帰ト ▲ヨト ▲ヨト 三日 - の々ぐ

Other characteristics - $M_{4\pi}$

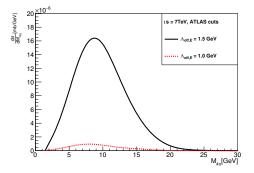


Figure : Four-pion invariant mass distribution $(M_{4\pi})$ with the ATLAS cuts (3) for $\Lambda_{off,E} = 1$ GeV (lower curve) and $\Lambda_{off,E} = 1.5$ GeV (upper curve).

Other characteristics - y

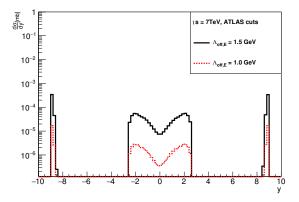


Figure : Distribution in rapidity of pions and protons for the ATLAS cuts (3).

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Other characteristics - $M_{\pi\pi}$

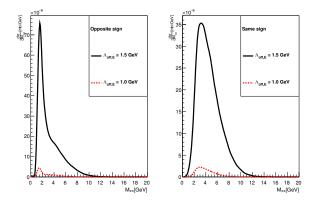


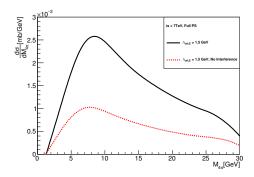
Figure : Dipion invariant mass distribution for the opposite-sign (left panel) and same-sign (right panel) pions with the ATLAS cuts (3) for different values of $\Lambda_{off,E}$. ▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

The model was studied in many aspects. For full details see our paper: https://arxiv.org/abs/1702.07572.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- P. Lebiedowicz and A. Szczurek, Phys. Rev. **D81** (2010) 036003.
- P. Lebiedowicz, O. Nachtmann, and A. Szczurek, Phys. Rev. D94 (2016) 034017.
- R. A. Kycia, J. Chwastowski, R. Staszewski, and J. Turnau, arXiv:hep-ph/1411.6035.

Thank You for Your Attention


Backup

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Interference effect - Full Phase Space

-1

$$|\mathcal{M}_{\text{no interference}}|^2 = \frac{1}{4} \left(|\mathcal{M}_{\{3456\}}|^2 + |\mathcal{M}_{\{5436\}}|^2 + \ldots \right) + \ldots$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Pomeron Reggeon influence - Full Phase Space

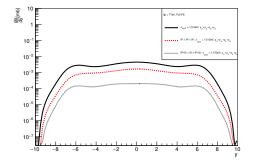


Figure : Rapidity distribution of pions for $(\mathbb{P} + f_{2\mathbb{R}}) \times (\mathbb{P} + f_{2\mathbb{R}}) \times (\mathbb{P} + f_{2\mathbb{R}})$ (upper curve), $\mathbb{P} \times \mathbb{P} \times \mathbb{P}$ (middle curve) and $(\mathbb{P} + f_{2\mathbb{R}}) \times f_{2\mathbb{R}} \times (\mathbb{P} + f_{2\mathbb{R}})$ (lower curve) exchanges for $\Lambda_{off,E} = 1.5$ GeV.